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Given topological spaces X, Y , we would like to know whether they are homeomorphic to one another.
It turns out this is hard, so instead we consider various invariants, which are preserved under homeo-
morphisms. For X a suitable space, we can define cohomology groups, Hk(X) for k ∈ Z≥0. In a very
imprecise sense, cohomology captures the k-dimensional “holes” in a space.

Much of this talk is lifted from lectures on differential geometry by Jack Smith and algebraic topology
by Ivan Smith.

1 Tangent spaces and vector bundles

This is a seminar on K-theory, so we should learn about vector bundles. On the way, we will pick up de
Rham cohomology, and use this to motivate some more general notions.

Definition 1.1. A topological space X is an n-manifold if

1. for each point p ∈ X, there is an open neighbourhood U of p, an open set V ⊆ Rn, and a
homeomorphism ϕ : U → V .

2. X is Hausdorff and second countable.

We call ϕ an chart around p. If we have ϕα, ϕβ overlapping charts, we have transition functions

ϕβ · ϕ−1
α : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ).

Definition 1.2. A smooth n-manifold is an n-manifold with smooth transition functions.

Heuristically, what this means is that locally on an n-manifold X, X “looks like” Rn. Any function
from X to a space Y can be considered locally as a function from an open set of Rn to Y . Hence notions
such as the differentiability of a real valued function makes sense. The reader is encouraged to think
about what the definition of a smooth map between smooth manifolds should be.

Definition 1.3. Smooth manifolds X and Y are diffeomorphic if there are smooth maps f : X → Y
and g : Y → X with f ◦ g = id and g ◦ f = id.
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Example 1.4. The n-sphere Sn ⊆ Rn+1 is a smooth n-manifold. Charts are given by stereographic
projection.

Note that at each point x of Sn, we have a tangent space, TxSn, given by the n-dimensional hyperplane
that is tangent to Sn at x, translated to the origin1. In other words,

TxSn = {y ∈ Rn|〈x, y〉 = 0},

where 〈·, ·〉 is the standard inner product in Rn.

For an embedded manifold in X ⊆ Rn, we can consider the tangent space at x ∈ X to be given
by the hyperplane which is the “first order approximation” to X at x (translated to the origin). For
abstract smooth manifolds, we should have an intrinsic definition of the tangent space. We will not be
too concerned with the definitions, but it is here for those who want it.

Definition 1.5. A curve based at p is a smooth map of the form γ : I → X which sends 0 to p, where
I is an open neighbourhood of 0.

Two curves γ1, γ2 based at p are said to agree to first order if there exists charts ϕ about p such that

∂

∂t
(ϕ ◦ γ1)(0) = ∂

∂t
(ϕ ◦ γ2)(0).

Definition 1.6. The tangent space to X at p is

TpX = {curves based at p}/agreement to first order.

Elements of TpX are called tangent vectors at p.

One can see (and perhaps try to prove2) that TpX is isomorphic to Rn as a real vector space. However,
TpX has more information than just a collection of vector spaces (which is very boring on its own).
In particular, we should be able to capture how these vector spaces are “glued together”. We naturally
arrive at the notion of a vector bundle.

Definition 1.7. Let X be a topological space. A vector bundle of rank d, is the following data:

1. A manifold E, called the total space

2. A smooth map π : E → B, called the projection.

3. An open cover {Uα}α∈A of X.

4. For each α, a diffeomorphism
Ψα : π−1(Uα) → Uα × Rk,

called local trivialisations, such that

• pr1 ◦Ψα = π on π−1(Uα).
• For all α, β, the map Ψβ ◦ Ψ−1

α on (Uα ∩ Uβ) × Rk has the form (b, v) 7→ (b, gβα(b)v for some
map gβα : Uα ∩ Uβ → GL(k,R).

The gβα are called trivialisation functions. The fibres π−1(p) are denoted Ep.
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This is a mouthful of a definition, but it is summarised by a picture
Remark 1.8. We may wish to consider vector bundles on manifolds which are not smooth. In this case,
we have that π is merely continuous and the trivialisations are homeomorphisms.
Remark 1.9. You can replace R with C to obtain a complex vector bundle.

Example 1.10 (The trivial line bundle and the Mobius bundle over S1). S1 can be covered by two open
sets isomorphic to (0, 1) with two intersections. Consider line bundles (vector bundles rank 1) trivialised
over these open sets. The transition function over one intersection set can (without loss of generality)
be set to g01 = 1. For the other trivilisation, we have two options: g10 = 1 or g01 = −1. This gives the
trivial line bundle and the mobius bundle respectively.

Example 1.11 (Tautological bundle over Grassmannian). The Grassmannian G(k, n) parameterises k-
dimensional hypersurfaces in Rn. For k = 1, we obtain the projective space PRn−1 We have a tautological
bundle

τ = {(x, h) ∈ Rn × G(k, n) : x ∈ h} → G(k, n),
where the map is given by projection. The fibre at every point p is the k-dimension hyperplane corre-
sponding to p. We leave it to the exercise to the reader that this is naturally a vector bundle (i.e. local
trivialisations exist). Analogously, you can replace R by C.

Suppose π : E → X and π′ : E′ → X are vector bundles over X. Then there is a vector bundle whose
fibres at each point p ∈ X is given by Ep ⊕ E′

p. We call this the Whitney sum E ⊕ E′ of E and E′. This
is an important definition for later. We leave it as an exercise to show the definition makes sense.

Similarly, we obtain the tensor product E ⊗ E′ and dual vector bundle E∗ by tensoring or taking the
dual vector space3 at each fibre respectively.

Definition 1.12. The r-th wedge/exterior power of a vector space V , denoted ∧rV , is spanned by

{v1 ∧ . . . ∧ vr|vi ∈ V }

with the relation
vσ(1) ∧ . . . ∧ vσ(n) = sign(σ)v1 ∧ . . . ∧ vr.

1We often draw pictures without translating to the origin, but this is necessary to have the tangent space be a vector
space.

2Read: the author did not want to write out the proof.
3E∗

p = HomR(Ep,R).



4 COHOMOLOGY AND VECTOR BUNDLES – SAE KOYAMA

You should think of an element of ∧rV as a parallelopiped with vectors vi in the corners. Swapping
the vectors gives you “negative volume”. Taking the r-th exterior power fibrewise gives a vector bundle
∧rE.

2 De Rham cohomology

Fix smooth manifold X.

Definition 2.1. The cotangent bundle of X, denoted T ∗X, is the dual to the tangent bundle.

Let’s describe this more concretely. For p ∈ X, consider an open neighbourhood U ⊆ X, and smooth
function f : U → R. If X has local coordinates xi around p, then there is a natural basis of TpX given
by (∂xi)i

4. We obtain an element of T ∗
p X defined by

f 7→
( ∑

ai∂xi
7→

∑
ai

∂f

∂xi

)
.

We call this element dpf .
Remark 2.2. Given our intrinsic definition of the tangent space, we can also write this as

[γ] 7→ ∂

∂t
(f ◦ γ)(0).

Patching the dpf together, we obtain a section of T ∗
p X, i.e. a smooth map s : X → T ∗

p X such that
π ◦ s = idX . We call sections of T ∗

p X one forms. If f : X → R is defined globally, we obtain a one form
df .

Definition 2.3. An r-form of X is a section of ∧rT ∗X. The space of r-forms on X is denoted Ωr(X).

Remark 2.4. One can think of one forms as infinitesimal arrows, two forms as infinitesimal areas, three
forms as infinitesimal volumes, and so on.

As a notational point, denote by dxi the dual to ∂xi
. We write

∑
I αIdxi1 ∧ dxir

= αIdxI , where the
sum runs over subsets I = {i1, . . . , ir} ⊆ [n] = {1, . . . , n}.5

Definition 2.5. The exterior derivative of a r-form α = αIdxI is

dα = dαI ∧ dxI .

One should check that this is well-defined (independent of coordinates).

Proposition 2.6. d2 = 0.

Proof. This is from the symmetry of partial differentials. Precisely, for α = αIdxI , we have

d2α = d

(
∂αI

∂xj
dxj ∧ dxI

)
= ∂2αI

∂xk∂xj
dxk ∧ dxj ∧ dxI .

Since ∂2αI

∂xk∂xj is symmetric in j, k but dxk ∧ dxj is antisymmetric.

Definition 2.7. A cochain complex is a sequence {Cr}r∈Z≥ of abelian groups and homomorphisms
dr : Cr → Cr+1 such that dr+1 ◦ dr = 0. We often suppress the r in dr.

Definition 2.8. A form α is closed if dα = 0 and exact if there exists a form β such that dβ = 0. We
denote the space or closed and exact r-forms Zr(X) and Br(X) respectively.

4∂xi is the (unique) tangent vector mapping to the standard basis vector ei under the map TpX → R, γ 7→ ∂
∂t

(ϕ ◦ γ)(0)
5Yes, the sum sign has disappeared. The sum is implicit in the notation.
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Definition 2.9. Note that d2 = 0 implies Br(X) ⊆ Zr(X). A cochain complex is exact if Br(X) =
Zr(X).
Definition 2.10. The r-th de-Rham cohomology group of X is

Hr
dr = Zr(X)/Br(X).

Why suffer through this? Consider S1. We claim that

Hr
dR(S1) =

{
R r = 0, 1
0 otherwise.

Parametrise S1 by angle θ. Heuristically, we have a closed one-form dθ, which is not exact - if dθ = df ,
then f = θ + a, but this is not continuous. So we see that H1(S1) has captured the “hole” in S1.

We briefly outline the proof. Any 1-form on S1 can be written uniquely on f(θ)dθ and all 1-forms
are closed. This is because S1 is one-dimensional, but one should prove this carefully. Define a map
I : Ω(S1) → R and f(θ)dθ 7→

∫ 2π

0 f(θ)dθ. This is linear and non-zero, hence surjective. It remains to
show that ker(I) = B1(S1).

In order for this to be useful, we should have invariance under homeomorphism. It turns out de Rham
cohomology is invariant under something weaker, namely homotopy6. This means it is not as refined an
invariant as it could be (since there exist spaces which are homotopic but not homeomorphic, such as
the circle and the annulus), but this is a sacrifice we are willing to make.
Remark 2.11. One could ask if two spaces with the same cohomology groups are homotopic. This is not
true.
Definition 2.12. Given a smooth map f : X → Y , the derivative of f at p ∈ X is the map DpX :
TpX → Tf(p)Y defined by [γ] 7→ [f ◦ γ].
Definition 2.13. Given a smooth map f : X → Y , the map (Dpf)∨ : T ∗

f(p)Y → T ∗
p X, dual to Dp, is

the pullback by f , denoted f∗. This induces a map f∗ : Ωr(Y ) → Ωr(X).
Proposition 2.14. For f : X → Y smooth, α an r-form on Y , d(f∗α) = f∗(α). Hence f∗ descends to
a map f∗ : Hr

dR(Y ) → Hr
dR(X).

It is clear that (id)∗ = id and that (f ◦ g)∗ = g∗ ◦ f∗.
Theorem 2.15. If f, g are homotopic, then f∗ = g∗.

This is well beyond the scope of this talk, but it follows fairly easily from Cartan’s magic formula. We
leave it as an exercise to show homotopy invariance from here (this is not hard).
Remark 2.16 (For experts). De Rham cohomology has many advantages. It can be computed for non-
trivial spaces, and the generators of the cohomology groups are explicit. The ring structure comes directly
from the wedge product. Poincare duality follows from Stoke’s theorem and Liebnitz rule. This is to be
expected, since one has the full-force of calculus available to them, but the payoff is that we are restricted
to smooth manifolds. Two circles glued together at a point is not a manifold, let alone a smooth one
(exercise: why?), but an algebraic topologist would definitely like to work with such a space. Similarly,
an algebraic geometer would like to work with singular varieties, and one has to reconstruct the theory
to deal with these.

3 Cohomology in general

There are many ways to define cohomology. One can recall, or look up, or take on faith, examples such
as simplicial or singular cohomology7. It is not at all clear that they should give the same thing, and

6Two maps f, g : X → Y are homotopic if there exists continuous H : X × [0, 1] → Y such that H(x, 0) = f(x) and
H(x, 1) = g(x). Two spaces X, Y are homotopic if there exists f : X → Y and g : Y → X such that f ◦ g and g ◦ f are
homotopic to the identity.

7A good source for this is Hatcher’s Algebraic Topology.
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the connections are deep8. This zoo of cohomologies should indicate that there is some kind of unifying
theory, which brings us to the Eilenberg–Steenrod axioms. We will not prove anything, and choose to
simply believe that a good cohomology theory should have these properties.
Definition 3.1. A pair of spaces is a pair (X, A) with A ⊆ X. A map of pairs of spaces f : (X, A) →
(Y, B) is a continuous map f : X → Y with f(A) ⊆ B.

A generalised cohomology theory is an assignment

(X, A) → h∗(X, A) =
⊕
i∈Z

hi(X, A)

satisfying the following

1. (Functoriality.) A map f : (X, A) → (Y, B) induces f∗ : h∗(X, A) → h∗(Y, B) such that (id)∗ = id
and that (f ◦ g)∗ = g∗ ◦ f∗.

2. (Homotopy invariance.) If f, g are homotopic as maps of pairs, then f∗ = g∗.

3. (LES of pairs) Write hi(X) = hi(X,∅). Then there exist maps hi(A) → hi+1(X, A) such that

. . . → hi(X, A) → hi(X) → hi(A) → hi+1(X, A) → . . .

is exact, where the other maps are induced by the natural inclusions.

4. (Excision.) If Z̄ ⊆ int(A), then the inclusion induces isomorphism

h∗(X \ Z, A \ Z) → h∗(X, A).

5. (Unions.) The natural inclusions induces isomrophism⊕
α

h∗(Xα) → h∗(
∐
α

Xα).

The groups h∗(pt) are called the coefficients of the theory. If the coefficents are not specified, we are
working with Z coefficients.
Theorem 3.2. If h∗, k∗ are generalised cohomology theories, then for a suitably nice9 pair of spaces
(X, A), if Φ : h∗ → k∗ is a natural transformation giving h∗(pt) ∼= k∗(pt), then we have h∗(X, A) ∼=
k∗(X, A).
Remark 3.3. We can reverse all the arrows, and obtain a homology theory. In many cases (such as
simplical or singular), we start with homology.

This is a lot of definitions, so I will finish with an example.
Proposition 3.4. The sphere S2 is not homotopic (hence not homeomorphic) to the torus T 2.

Proof. We have

H∗(S2) =
{
Z if ∗ = 0, 2
0 otherwise,

H∗(T 2) =


Z if ∗ = 0, 2
Z2 if ∗ = 1
0 otherwise.

Remark 3.5. The best way to do the above calculations is the Mayer-Vietoris sequence but an interesting
exercise might be to calculate this from the axioms.

8A nice proof of the connection between Cech cohomology and de Rham cohomology using (very tame examples of)
spectral sequences is given in Differential Forms and Algebraic Topology.

9Cell complex and subcomplex, for example.
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