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1 The problem of Apollonius

Question 1.1. Consider three circles in a plane. How many circles are
tangent to all three circles?

Figure 1. One solution (in purple) to Apollonius problem

There are many approaches to this problem, first posed by Apollonius of
Perga (c. 262 BC – c. 190 BC). We will make use of coordinate geometry in
R2.
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Let the centre of the circles be (x1, y1), (x2, y2), (x3, y3) and radii be r1, r2, r3
respectively. We look for a circle with centre (xs, ys) with radius rs. Two
circles are tangent if and only if the distance between the two centres is equal
to the sum or difference of the two radii (depending on whether the circles
are externally or internally tangent). This gives us a system of equations for
xs, ys, rs.

(x1 − xs)
2 + (y1 − ys)

2 = (r1 ± rs)
2 (1)

(x2 − xs)
2 + (y2 − ys)

2 = (r2 ± rs)
2 (2)

(x3 − xs)
2 + (y3 − ys)

2 = (r3 ± rs)
2 (3)

Multiplying out Eq. (1) - Eq. (3), we have x2
s + y2s appearing on the left

hand side and r2s on the right hand side of all three equations. Subtracting
Eq. (1) from Eq. (2) and Eq. (3), we obtain expressions linear in xs, ys, rs.
For example, the first two equations give

x2
1 + y21 − x2

2 − y22 − 2(x1 − x2)xs − 2(y1 − y2)ys = r21 − r22 + 2(r1 − r2)rs
(4)

and similarly using Eq. (1) and Eq. (3) we obtain a linear equation in
xs, yx, rs

1. Assuming these equations are non-degenerate, we may rearrange
these linear equations to obtain

xs = M +Nrs (5)

ys = P +Qrs (6)

where M,N,P,Q are known rational functions of xi, yi, ri
2.

We may then substitute this into Eq. (1). This gives a quadratic in rs which
has at most two solutions, except in degenerate cases. We have eight ways
of choosing the signs in Eq. (1) - Eq. (3), thus we may think we have (in
general) at most 16 solutions.
However, note that if (rs, xs, ys) is a solution, so is (−rs, xs, ys) but with
different choices of signs. Thus we have at most 8 solutions, except in degen-
erate cases where we have infinitely many solutions. Finding the conditions

1These equations are not linear in x1 etc. but these variables are known, so this is not
a problem.

2A rational function is a function of the form p/q where p, q are polynomials
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for the configuration to be degenerate is left as an exercise for the reader,
but one may show that they are somehow ‘rare’. We lose solutions when we
have, for example, double roots or imaginary solutions.

Remark. This result is both satisfying and unsatisfying. In general we have at
most 8 solutions. It would be even nicer if we always had exactly 8 solutions,
but unfortunately this is not the case for circles in the plane.

Note that the problem would partially be fixed if we allowed complex solu-
tions, since in C, most degree d polynomials have exactly d roots. A circle
with imaginary radius is much harder to visualise, but the payoff is bountiful.
Thus from this point on, we will always work with C instead of R.3

Remark. Here we have taken a geometric question and reduced it to counting
the number of intersections of some curves, given by Eq. (1) - Eq. (3). This
is a general technique, and studying intersections of curves is a rich area of
mathematics.

2 Bezout’s Theorem

We have seen that studying intersections of curves is useful, and in this
section we will consider plane curves in particular.

Example 2.1. Two distinct lines in the plane (degree 1 curves) intersect at
one point, unless they are parallel.

Example 2.2. We define a quadratic curve in the plane C2 to be the set
defined by ax2 + by2 + cxy + dx+ ey + f = 0 with at least one of a, b, c ̸= 0
(degree 2 curve). We intersect a line with a quadratic. By applying a rotation
and translation, without loss of generality the line is y = 0. Thus we are
counting the solutions to αx2 + βx + γ with α ̸= 0. This has two solutions,
except when we have a double root.

The observant reader may realise that 1× 1 = 1 and 2× 1 = 2, from which
we may conjecture that the intersections of degree n and degree m curve
meet at nm points. This is not true, even the simplest case of two distinct

3More generally, we may work with an algebraically closed field of characteristic 0.
Asking what happens when you remove these conditions is the avenue to a fabulous leap
from classical to modern algebraic geometry, but since this footnote space is too small,
this is a story for another time.
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lines. However, we can ‘fix’ this result by saying that parallel lines meet ‘at
infinity’. We will now define this notion more formally.

Definition 2.3. The projective space of dimension n is

PCn = Pn = {lines in Cn+1 through the origin}

Example 2.4. Analogously, we can define PRn. We can define a line in
R2 by any non-zero point, or by any point on the unit circle. However two
antipodal points on the circle give the same line. So PR1 is the circle with
opposite points identified. It turns out that PR1 is equivalent to the circle,
but this is not a general result! In particular, PR2 ≇ sphere.

We may specify any line in Cn+1 using a non-zero point, say (a0, ...., an).
We denote this line (which is a point in PCn) by [a0 : ... : an].
Here we give a big WARNING. These ‘coordinates’4 for PCn are ambiguous !
Given any non-zero constant λ ∈ C, (a0, ..., an) and (λa0, ..., λan) define the
same line. So [a0 : ... : an] and [λa0 : ... : λan] specify the same point in PCn.

Remark. We should convince ourselves that this is the extension to Cn that
we want. Note that in CPn we have a set

U = {[a0 : ... : an] ∈ CPn|a0 ̸= 0} ⊂ CPn

We should check that this set is well-defined. Note that if a0 ̸= 0, then for
all 0 ̸= λ ∈ C, λa0 ̸= 0. So the property a0 ̸= 0 holds for any representation
of [a0 : ... : an], as required.
Now for any such [a0 : ... : an], we may divide each entry by a0 ̸= 0 to obtain
[1 : a′1 : ... : a

′
n]. Thus points in U correspond to points in

Cn = {(a′1 : ... : a′n)|a′1, ..., a′n ∈ C}

As an exercise, the reader may want to convince themselves that CPn is
really an extension of U ∼= Cn in this way, and that the set CPn − U is
‘small’.

We now work in the projective plane P2 = PC2, coordinates [T : X : Y ]. We
want to consider sets defined by equations f(x) = 0, where f is a polynomial,
but we immediately have a problem. The ambiguity of our coordinates mean
evaluating polynomials do not make sense. If we try to evaluate X + 2 at
P = [1 : 1 : 2], we have 1 + 2 = 3. But P = [2 : 2 : 4], and 2 + 2 = 4. So we
will work with a particular subset of polynomials.

4called homogeneous coordinates.
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Definition 2.5. An homogeneous polynomial of degree n in variables X, Y, T
is a sum of terms of degree n, i.e. cT aXbY c such that a+ b+ c = n.

Lemma 2.6. If f is a homogeneous polynomial of degree n, then

f(λt, λx, λy) = λnf(t, x, y)

Proof. Exercise.

As a consequence, for P = [t : x : y] and f a homogeneous polynomial of
degree n, f(P ) does not make sense, but we can define the set

V (f) = {[t : x : y] : f(t, x, y) = 0}

Definition 2.7. A degree n curve in P2 is a set of the form V (f), where f
is a homogeneous polynomial of degree n.

Example 2.8. We define a line in P2 to be a degree 1 curve. It is left as an
exercise to show that any two distinct lines in P2 meet at exactly one point.

We now state the main result.

Theorem 2.9. (Bezout, weak version) Suppose X = V (f), Y = V (g) are
curves in P2 of degree n and m respectively. If f and g share no non-trivial
factors, then X ∩ Y is finite and |X ∩ Y | ≤ nm.

We outline a proof given in Toni Annala’s notes . Annala’s notes also gives
the stronger statement which asserts that we have exactly nm intersections
counted with some appropriately defined multiplicity5. The avid reader may
wish to fill in the details, although this uses some machinery beyond the
scope of this mini-course (in particular, some linear algebra). However, in
some sense the result is more important than the proof. It is a remarkable
statement: that we have some control on the number of intersections of two
curves by some algebraic condition on the polynomials defining them.

Lemma 2.10. X ∩ Y is finite ⇐⇒ f, g share a non-trivial factor.

Proof. ( ⇐= ) If h non-trivial factor, any point at which h vanishes (of which
there are infinitely many) is in vanishing of f, g.
( =⇒ ) Not hard, but uses some results about C[x, y]. Omitted.

5Defining a ‘natural’ notion of multiplicity is an interesting problem. One way to do
this is derived algebraic geometry (ask Sofia for a citation)
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Now assume f, g share no non-trivial factors. Let us consider the simpler
case of f, g ∈ C[x]. Let f = anx

n+...+a0, g = bmx
m+...+b0. The intersection

points are the common roots of f and g. Now f, g have a common factor if
and only if f, g share linear factors. This occurs if and only if af = bg, for
some a, b ∈ C[x] non-zero and deg(a) < n, deg(b) < m (consider the prime
factorisations). Equivalently, there exists constants c1, ..., cn, d1, ..., dm ∈ C
such that

c1f + ...+ cnx
n−1f + d1g + ...+ dmx

m−1g = 0 (7)

I claim that this condition is equivalent to some polynomial in the coeffi-
cients a0, ..., an, b0, ..., bn, denoted Res(f, g), vanishing. In the language of
linear algebra, we want f, xf, ..., xn−1f, g, xg, ..., xm−1g are linearly depen-
dent. The condition is that Res(f, g) = det(Syl(f, g)) = 0, where

Syl(f, g) =



an an−1 an−2 ... a0 0 0 ... 0
0 an an−1 ... a1 a0 0 ... 0

...
0 0 ... 0 an ... a0
bn bn−1 bn−2 ... b0 0 0 ... 0
0 bn bn−1 ... b1 b0 0 ... 0

...
0 0 ... 0 bn ... b0


(8)

This can be seen by expanding f and g and comparing coefficients of xi.
Res(f, g) is called the resultant of f and g. The exact expression is not
important. What we care about is that there exists such a polynomial, and
that it can be explicitly calculated.

Proof. (of Bezout) Assume f, g coprime, so X ∩ Y is finite.
First we start with some technicalities. By finiteness of X ∩ Y , there exists
a point P such that

1. f(P ), g(P ) ̸= 0

2. for any Q1, Q2 ∈ X ∩ Y , P is not on the line through Q1, Q2

Applying a change of coordiantes, without loss of generality, P = [1 : 0 : 0].
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Write f, g as polynomials in T

f = fnT
n + fn−1T

n−1...+ f0 (9)

g = gmT
m + fm−1T

m−1...+ g0 (10)

Exercise: use technicality 1 to show that fn, gm ̸= 0.
Now form the resultant R = Res(f, g) which is a polynomial in the coeffi-
cients fi, gi, so is a polynomial in x, y. We have R(x, y) = 0 if and only if
there exists a t such that t is a root of f and g, i.e. [t : x : y] = 0 (†).
We finally show that R is a homogeneous polynomial of degree nm. This
is done using explicit calculation of the determinant6. Showing that it is
non-zero is a little subtle7.
Hence we may write8 R(x, y) =

∏nm
i=1(aix+biy). Each equation aix+biy = 0

gives a line in P2 on which, by (†), there is an intersection point. This line
goes through [1 : 0 : 0] so condition 2 insures we are counting intersections
only once. This proves the result.

Remark. We lose solutions precisely when the roots ofR(x, y) are not distinct.
Geometrically, this occurs when the curves do not intersect transversely.
Compare this to when we intersected a line with a quadratic and had a root
of multiplicity 2.

Remark. As a key takeaway, we have seen that translating geometric prob-
lems to algebraic ones is a powerful technique. There is a deep interplay
between algebra and geometry, which is starting point of algebraically geom-
etry.

3 Lines in a cubic

We end with a brief comment on a significant and well-known example: lines
on a cubic surface.

Definition 3.1. An cubic surface in P3 is the zero set of a degree 3 homo-
geneous polynomial f in four variables

V (f) = P ∈ P3 : f(P ) = 0
6detA =

∑
σ∈Sn

∏n
i=1 Aiσ(i) and note that fi is a homogeneous polynomial of degree

n− i and similarly for g.
7Uses Gauss’ lemma for polynomials
8using that R is homogeneous, this follows from the fact that any degree n polynomial

over C in one variable splits completely into linear factors
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Question 3.2. Given a cubic surface, how many lines are contained in it?

It turns out that for smooth cubic surfaces9 the answer is 27.

Figure 2. The 27 lines in a cubic

This is miraculous! We have no reason to expect that the answer is finite,
let alone that there is the same number of lines in all ‘nice’ cubic surfaces.
The result is specific to cubics. A quadratic surface contains infinitely many
lines, and a degree n surface, for n ≥ 4, contains no lines in general. Standard
proofs of the cubic result are advanced, although an excellent and somewhat
accessible proof is given in . There are many more results of a similar flavour,
some of which require very advanced techniques to solve.

9so in particular the surface has no cusps or nodes
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