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1 Motivation

In Euclid’s Elements, Euclid set out five axioms from which he proved various geometric results. They
are

1. Two points can be joined by a straight line.

2. Any line segment can be infinitely extended.

3. Given any point and positive radius, we can draw a circle with this point as the centre and this
radius

4. All right angles are equal.

5. (Parallel Postulate) If two straight lines are intersected by another straight line and the sum of the
internal angles on one side of the line is less than 180◦, then the two lines will meet on this side
when extended indefinitely.

We may replace the parallel postulate to obtain

5. (Playfair’s Postulate) Given a straight line l and a point P not on the line, there is exactly one
straight line which goes through P and does not intersect l (when both lines are extended indefinitely).

Many geometers tried (and failed) to prove the fifth axiom from the first four. We now know this is
not possible, since there are geometries which have the first four axioms but not the fifth. For example,
we can consider the two sheeted hyperboloid. We let lines on the hyperboloid to be length minimising
curves and angles between two intersecting lines to be the angle between the tangent vectors there. One
may check that the first four axioms hold. One may also show that the fifth axiom is replaced by

5. Given a straight line l and a point P not on the line, there are at least two which goes through P
and does not intersect l.

This is an example of hyperbolic geometry.
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When studying this geometry, one would like a simple description of lines, and also of the isometries
or distance preserving maps. In this mini-course we will look at the construction of the Hyperbolic
(Poincaré) Disc Model and explore some of the isometries.

2 Distances

To begin with, we will revisit the notion of distance and length. We start with a curve γ defined as
y = f(x) in the Euclidean (flat) plane, where x takes values in the interval [a, b] and f is differentiable.
We partition the interval into sections of length △x. Using Pythagoras’ theorem, the length of the curve
between x and x+△x is approximately △s2 = △x2+△y2, where △y = f(x+△x)− f(x). Summing
these lengths up and taking a limit appropriately, we obtain

length(γ) =

∫ b

a

√
1 +

dy

dx
dx (2.1)

Now consider a more general curve γ defined as γ(t) = (x(t), y(t)) where x, y are differentiable
functions and t takes values in [a, b]. Similarly, we obtain that

length(γ) =

∫
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∫ √
dx2 + dy2 =

∫ b
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+
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2

dt (2.2)

We may also change to polar coordinates (r, θ) with x = r cos(θ) and y = r sin(θ). In this case the
length of a curve γ(t) = (r(t), θ(t)) is

length(γ) =

∫
ds =

∫ √
dr2 + rdθ2 =

∫ b
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√
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+ r2
dr

dt

2

dt (2.3)

We will not think too deeply here about what expressions like
∫ √

dx2 + dy2 mean and instead, use
this calculation to motivate a more general definition of length.

Definition 2.1. Given a surface with an appropriate parametrisation we define an abstract Riemannian
metric as an expression of the form ds2 = E(u, v)du2 + F (u, v)dudv + G(u, v)dv2. It also must be
positive definite. This means that Eu2 + 2Guv +Gv2 > 0 for all (u, v) ̸= 0 which insures that lengths
are positive.

Definition 2.2. Given a surface (with appropriate parametrisation) with a metric ds2 = E(u, v)du2 +
F (u, v)dudv+G(u, v)dv2 and curve on the surface γ parametrised as γ(t) = (u(t), v(t)) with t in [a, b],
then we define the length of γ to be

length(γ) =

∫ b
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So the Euclidean plane with it’s usual cartesian parametrisation, we have E(x, y) = G(x, y) = 1
and F (x, y) = 0. As an exercise, you may wish to think about how to calculate lengths on a sphere
parametrised using spherical polar coordinates and relate it to the discussion above.

Definition 2.3. The distance between two points is the “shortest possible” length of curves between
the two points.

3 The Hyperbolic Disc

We now have enough definitions to introduce the hyperbolic disc.

Definition 3.1. The hyperbolic disc is the unit disc with centre 0, radius 1 endowed with the abstract
Riemannian metric

ds2 =
dx2 + dy2

(1− x2 − y2)2

Intuitively, as we go towards the edge of the disc,

ds2 >> dx2 + dy2

and so lengths that are the same with respect to the Euclidean metric are the much larger near the edge
of the disc. In Escher’s illustration of the Hyperbolic disc, shown in Fig. 1, the angels are all the same
size with respect to the hyperbolic metric but get smaller as they go towards the edge of the disc with
respect the flat Euclidean metric (demonstrated by the red lines). The length of the line from the centre
to the edge (shown in green) is infinite.

Given points P and Q in the disc, we wish to know what the curve between them that minimises
length is. We first start with the simple case when P is at the origin and Q is on the positive real axis.
We wish to minimise

Length(γ) =

∫ b

a

√
ẋ2 + ẏ2√
x2 + y2

dt

This can be achieved by taking y = ẏ = 0. Hence the length minimising curve is the segment of the
diameter which joins P and Q.



Figure 1: Escher’s Circle Limit IV (Heaven and Hell)

We will now to try understand some isometries of the Hyperbolic disc and to do this, we take a small
detour to look at Möbius maps.

Definition 3.2. A map f : C → C is a Möbius map if it is of the form

f(z) =
az + b

cz + d

where a, b, c, d ∈ C with ad− bc ̸= 0 and we interpret 1/0 = “∞”, “∞”/“∞” = 1 1/“∞” = 0.1

By writing z = x+ iy, we can consider a Möbius map to be a transformation of the plane plus a point
“at infinity”. Some examples of Möbius maps are f(z) = az, a ̸= 0, f(z) = (cos(θ) + i sin(θ))z, f(z) =
1/z. These can be thought of as transformations of the plane. Möbius maps have several nice properties.
Some examples are given below, with proofs left as an exercise to the reader2.

1. Möbius maps are continuous bijections. (Moreover they are smooth.)

2. Composition of Möbius maps are Möbius maps. (Moreover, they form a group acting on the
extended comlex plane.)

1More precisely, we consider f to be a function from the extended complex plane Ĉ = C ∪ {∞}. A more intuitive
picture can be seen by considering the extended complex plane as a projection of the sphere.

21. Note that rational functions are continuous so it suffices to check continuity at ∞ and the preimage of ∞.
For bijectivity, proving 2 may help. 2. It is useful to check that the set of all Möbius functions are generated by the
transformations z 7→ 1/z, z 7→ az where a ̸= 0 and z 7→ z + b b ∈ C. 3. Show that circles and lines are defined by
an equation of the form Az2 + Bz + C = 0 and consider their transformations under the generators. 4. Requires some
complex analysis, but is essentially the chain rule (and f has non-vanishing derivative at all points).



Figure 2: Simple case when P at origin and Q on positive real axis.

3. Möbius maps send circles and lines to circles and lines.

4. Möbius maps preserve angles.

A question we may wish to ask is given a subset S of the plane, what are the Möbius maps which
preserve S. When S is the unit disc, some examples would be

1. f(z) = z

2. f(z) = (cos(θ) + i sin(θ))z for θ ∈ R

3. f(z) = z−1/2
1−z/2

while some non-examples would be

1. f(z) = z + a, a ̸= 0

2. f(z) = 1/z

We claim that the set of Möbius transformations preserving the unit discs is

{
f(z) = λ

z − a

1− āz
| |a| < 1, |λ| = 1

}
(3.1)

This result is useful because of the following theorem.

Theorem 3.3. Möbius maps which preserve the unit disc are isometries of the hyperbolic disc.

Proof. For transformations of the form w = f(z) = λz where |λ| = 1, we have dw = λdz. So |dw| =
|dz|. Also |z| = |λ||w| = |w|. Note that ds = |dz|2/(1−|z|2)2, and the result follows. A similar and more
tedius calculation gives invariance of ds under transformations of the form f(z) = (z−a)/(1− āz).



We now return to the question of length minimisers. Consider P and Q, general points in the unit
disc. Let P and Q be at the points represented by the complex number a and b respectively. We may
apply the transformation z 7→ z−a

1−āz
. P is mapped to the origin. Applying further a rotation f(z) = λz

we can send P to P’, Q to Q’ where P’ is at the origin and Q’ is on the positive real axis. Let the
composition of these functions be f . We have already seen what the length minimising curve between
P’ and Q’ is - it is the straight line joining the two, call it γ′.

Figure 3: There is a Möbius map sending P to the origin and Q to the positive real axis.

Note that any length minimising curve between P andQ, say γ must satisfy f(γ′) = γ since f preserves
all lengths of curves. So γ′ = f−1(γ). Recall that Möbius maps send circles/lines to circles/lines and
preserve angles. The real axis is a line which meets the unit circle at right angles. Hence γ will be part
of a circle which meets the unit circle at right angles or is a diameter. This motivates our definition.

Definition 3.4. A hyperbolic line is a circle which meets the unit disc at a right angle, or a diameter of
the unit disc.

We can note several properties of the hyperbolic disc that are like the Euclidean plane.

1. Between any two points there is a hyperbolic line joining them

2. Any finite segment of a hyperbolic line can be extended to an infinite one

3. Can define a hyperbolic circle with centre P as the locus of points with distance r away from P

And some more properties which are different from the Euclidean plane.

1. Distinct lines either 1) intersect 2) meet ‘at infinity’ 3) don’t meet at all

2. Internal angles of a hyperbolic triangle add up to less than π

3. Given line R and point P not on R, there are at least two distinct lines through P that do not
intersect R

To summarise, we defined the hyperbolic disc as the unit disc with the abstract Riemannian metric
ds2 = dx2+dy2

(1−x2−y2)2
. We found a class of isometries which were Möbius maps preserving the unit disc. We

used this to show that the length minimising curves were segments of circles meeting the unit circle at
right angles and diameters. This gives rise to a hyperbolic geometry.



Figure 4: The hyperbolic geometry of the hyperbolic disc.

4 Brief Notes on Extensions and Applications

There are a few ways we can extend our discussion. We saw briefly another model of the hyperbolic
space with the two sheeted hyperboloid. Another model is given by the upper half plane equipped with
the metric ds = (dx2 + dy2)/y2. In fact, all of these models are related. The hyperbolic disc model can
be considered as a projection of the hyperboloid model, and the hyperbolic disc model and the upper half
plane model are related by the Möbius map (z− i)/(z+ i). An analogous higher dimensional hyperbolic
space can be defined on the n dimensional ball.

Hyperbolic geometry has wide reaching applications, from modular forms to special relatively. For
those who are familiar with Minkowski space-time, notes by Barrett[1] goes into detail about the relation
with hyperbolic geometry. More generally, non-Euclidean geometry plays a fundamental role in general
relatively.
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