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In this seminar, I will discuss the moduli space of algebraic curves, then
introduce tropical geometry as a method for studying them.

1 Algebraic Curves and Riemann Surfaces

We work over the base field of C. We consider projective space Pn = Cn+1/ ∼
where x ∼ λx for all x ∈ Cn, λ ∈ C \ {0}. Coordinates are given by
[X0 : ... : Xn] for any representative (X0, ..., Xn) in the equivalence class. We
call any set Ui = {Xi ̸= 0} an affine patch. Each affine patch is naturally
isomorphic to Cn.

Definition 1.1. A homogeneous polynomial of degree d in C[X1, ..., Xm] is
a polynomial in C[X1, ..., Xm] which is a C-linear combination of degree d
monomials.

Definition 1.2. The vanishing locus of homogeneous polynomials F1, ..., Fl

in C[X1, ..., Xm] is V(F1, ..., Fl) = {P ∈ Pn|Fi(P ) = 0, i = 1, ..., l}

Proposition 1.3. The vanishing locus is well-defined.

Proof. We have that F (λX0, ..., λXn) = λdF (X0, ..., Xn) where d is the de-
gree of F .

Definition 1.4. A projective variety is the vanishing locus of some (finitely
many) homogeneous polynomials.

Except for a few special points, locally projective varieties look like Cn.
Since they are given by the vanishing of some polynomials, this can be seen
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via the inverse function theorem. We wish to consider a particular set of
‘nice’ projective varieties - those that are smooth, irreducible. By smooth, we
mean that there are no such special points and by irreducible, the variety
doesn’t have multiple components. Consequently, such a projective variety
is in fact a complex manifold of dimension n. Locally, it looks like Cn.
An interesting class of algebraic varieties are algebraic curves, which are
algebraic varieties of dimension 1. We are working over C, so these are
algebraic varieties with real dimension 2. Topologically, they are surfaces,
but the complex nature gives us more structure.

Definition 1.5. A Riemann Surface is a connected, Hausdorff space R which
is locally homeomorphic to an open subset of C, with analytic transition
functions.

So an algebraic curve is naturally a Riemann surface. A remarkable result
is the converse: that every compact Riemann surface is an algebraic curve.1

From this point onwards, we will say ‘algebraic curve’ for smooth, complex,
projective, irreducible algebraic curve, used interchangeably with ‘Riemann
surface’.

Figure 1. Topologically, Riemann surfaces are oriented surfaces

2 Moduli Spaces

Loosely, a moduli space is a space which parametrises objects (often geomet-
ric) we are interested in.
Let us start with a simple example. Consider lines in C2 through the origin.
They are parameterised by CP1. Note we have a topology on CP1 given by
the quotient topology. We can make sense of what is means for two lines to

1one way to prove this is through the theory of GAGA



2 MODULI SPACES 3

be ‘close’ to each other. We can also make sense of a continuous family of
lines, given by a path in CP1.

Tentative definition We define Mg,n to be the moduli space of genus g,
n marked Riemann surfaces.

The definition is tentative because we have not formally defined what a
moduli space is.2 This is beyond the scope of this seminar, so we will continue
with the informal notion of a space which parametrises isomorphism classes
of genus g, n marked surfaces. Often we write Mg = Mg,0.

Example 2.1. Let us find M0,3. This is the space of genus 0 curves with 3
points. We assert that every Riemann surface of genus 0 is isomorphic to P1,
also known as the Riemann sphere C∞. The automorphisms are precisely the
Möbius transformations.3 The group of Möbius transformations acts triply
transitively on the Riemann sphere. So given a pair of three points, there
is a unique automorphism taking one to the other. Hence there is exactly
one genus 0 curve with 3 points up to isomorphism. M0,3 = point. (The
uniqueness of the map is important in the definition of a moduli space.)

Example 2.2. Let us find M0,4. As above, we use that the unique Rie-
mann surface of genus 0 is the sphere and that it’s automorphism group
consists of Möbius transformations. If we have four distinct points on P1,
say (p1, p2, p3, p4), then as above we may apply a (unique) automorphism such
that the first three points are mapped to 0, 1,∞. So a genus 0, 4 marked
Riemann surface is specified by where the fourth point is sent. In other words

M0,4 = P1 − {0, 1,∞}

As an aside, there is an explicit way to calculate this point, given by the
cross ratio of p1, ..., p4.

Example 2.3. A slightly harder example. We consider M1,1, the moduli
space of genus 1 algebraic curves marked with one point, otherwise known as
an elliptic curve. It is known that any such curve is given as a quotient C/Λ,
where Λ is a lattice in C. Without loss of generality, Λ = ⟨1, τ⟩, with τ in the
upper half plane. For two lattices Λ and Λ′, C/Λ ∼= C/Λ′ if and only if the
two lattices are related by a Möbius transformations f(z) = (az+ b)/(cz+d)
with a, b, c, d ∈ Z. So M1,1 is the upper half plane quotiented by SL2(Z).

2The definition is secretly a theorem. A significant result is that such a ‘space’ (more
accurately, a stack) exists

3f(z) = az+b
cz+d with suitable extension to infinity.
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Remark. Mg,n is not usually compact. We often compactify it to form Mg,n.

Why moduli? Moduli spaces of algebraic curves are one of the most
studied spaces in algebraic geometry. They are complicated enough to be
interesting, but are simple enough that we have a handle on their properties.
However, even if solely interested in individual algebraic curves, one naturally
arrives at moduli spaces.4

3 Tropical Curves

We introduce tropical curves5 as a degeneration of algebraic curves. The
intuitive idea is that algebraic curves are somewhat squishy, while tropical
curves are incredibly rigid. There are many more things we can say about
tropical curves, and many of those things can be used in turn to deduce
properties of algebraic curves.
We make this correspondence more explicit. Consider an algebraic curve
C given by a degree d homogeneous polynomial in P2 and restrict to (C∗)2.
Now apply the map

Log : (x, y) 7→ (log |x|+ log |y|) (1)

The result is called the amoeba of the curve. We have d tendrils going off
to infinity in the directions (1, 1), (0,−1), (−1, 0), with some structure in the
middle. The number of holes in the amoeba gives the genus of the algebraic
curve (not obvious). To make the structure clearer, we take a family of such
amoebas

Logt : (x, y) 7→ (− logt |x|+− logt |y|) =
(
− log |x|

log t
,− log |y|

log t

)
(2)

and take the limit as t → 0. The resulting skeleton is the tropical curve
determined by C.6

Tropicalisation is a very powerful technique, and a very new technique. For
instance, there is a tropical analogue of Bezout’s theorem on intersection of

4For example, one proof that there are 27 lines in a cubic involves considering the
moduli space of pairs (l, C) where l is a line contained in a cubic C, and considering the
projection maps to the moduli space of cubics and lines respectively.

5so named because of Brazilian mathematician Imre Simon
6while this is the intuitive method for doing this, in practicality this is rather awful.

Alternatively, use Puiseux series
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Figure 2. Algebraic curves to amoebas to tropical curves

curves. By a correspondence theorem, this can be used to prove classical Be-
zout’s theorem. New results have also been proven using tropical techniques.
However, the relation between algebraic and tropical curves is not fully un-
derstood at all. Many features of algebraic curves have tropical analogues,
such as divisors and the Riemann-Roch theorem, but it is not clear if they
are related.

4 Moduli Space of Tropical Curves

In this final section, we will look at the moduli space of abstract tropical
curves and relate this back to the moduli space of algebraic curves. Firstly,
observe that a tropical curve can be considered as a metric graph, but also
allowing infinite edges. This motivates the next definition.

Definition 4.1. An abstract tropical curve is a connected metric graph
(graph where each edge is given a positive length), which may have leaves
with infinite length.

Remark. Tropical curves are embeddings of abstract tropical curves into Rn,
given by piecewise linear functions on an abstract tropical curve. An inter-
esting question is how the space of embeddings of tropical curves into Rn is
related to the space of embeddings of algebraic curves into Pn.

Two metric graphs are considered the same if they give the same metric
space. We say an abstract tropical curve has genus g if it has g holes.7

7We can formalise this by saying it has 1st Betti number g
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We wish to construct M trop
g,n , the moduli space of abstract tropical curves of

genus g with n leaves. Given an abstract tropical curve, we can deform it
by changing the edge lengths. This gives a d dimensional cones {x ∈ Rd :
xi ≥ 0}, where d is the number of edges with finite length, quotienting by
automorphisms as necessary. When an edge length hits 0, it can then be
deformed into a graph with a different configuration of edges.
However we have a problem. Suppose we have an abstract tropical curve
with a loop. If all the edges are shrunk to length 0, then we lose a hole. To
fix this, we add integer weights to the vertices. We then define the genus to
be the sum of the number of holes in the graph and the weights. We now
glue the different parts together to form our moduli space M trop

g,n . This is an
example of a generalised cone complex.

Figure 3. A diagram of M trop
1,2

We return to the moduli space of abstract tropical curves. Recall that Mg,n

is not usually compact. To see why this happens, consider the one pointed
torus. One way to deform the torus is to shrink the size of the tube at a
given point.8 However, when the size of the tube hits 0, we no longer have a
smooth curve, but a curve with a nodal singularity.

Figure 4. Deforming a complex torus to form a node

8The pair of pants construction is enlightening
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Definition 4.2. A stable curve is an algebraic curve whose only singularities
are nodes and whose automorphism group is finite. In particular, any com-
ponent of genus 0 has at least three special points (singularities or marked
points) and any component of genus 1 has at least 1 special point.

Mg,n is the moduli space of genus g, n marked stable curves.
Now for a stable curve C, we can form a dual graph with vertices v corre-
sponding to irreducible components Cv, with an edge between them for each
node in Cv ∩ Cw

Figure 5. Strata of Mg,n and the corresponding dual graph

The dual graphs are abstract tropical curves without the edge lengths. In
fact, we may arrive at abstract tropical curves by adding edge lengths to the
graphs found in this way. We will end here, but further reading can be found
at https://www.math.brown.edu/mchan2/Mg.pdf.

https://www.math.brown.edu/mchan2/Mg.pdf
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