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INTRODUCTION

Loosely, a moduli space is a space parameterising some geometric objects. Moduli spaces are
of significant interest. Even when studying single geometric objects, it is often useful to consider
an appropriate moduli space, and there are many interesting geometric questions we can ask
about them. An important class of examples are Hilbert schemes, which parametrise the closed
subschemes of Pn, and more generally the subschemes of a fixed scheme X, with given Hilbert
polynomial P. The Hilbert scheme of points, denoted Hilbd(X), are those which parametrise the zero
dimensional subschemes of length d.

Hilbert schemes of points have many useful features. They represent a certain moduli functor,
so are fine moduli spaces (see Definition 1.1.3), which allows the tangent space to be described via
deformations. In general, Hilbert schemes are quasi-projective (due to Grothendieck, see Theorem
1.2.3) and connected (due to Hartshorne [17], also see Proposition 1.4.3). The Hilbert scheme of
points of a surface is particularly well-behaved. Fogarty [11] proved that for a non-singular surface
S, Hilbd(S) is non-singular of dimension 2d. For Hilbd(S), the cohomology has been studied
[12, 24, 32] and enumerative geometry results derived [2, 26].

However, for general X, the Hilbert scheme of points is highly pathological. Vakil [33] defines
a moduli space for which Murphy’s Law applies as those on which every singularity type of finite
type over Z appears, and Jelisiejew [20] shows that for Hilbpts(An) = ⨿dHilbd(An), with n ⩾ 16,
Murhpy’s Law holds up to retraction. This describes a kind of “arbitrarily bad behaviour”. Con-
cretely, for a smooth variety X of dimension n, Hilbd(X) always has a smoothable component of
dimension dn (see Section 2.1). Iarrobino [19] showed that for a non-singular variety V of dimen-
sion n ⩾ 3, Hilbd(V) is reducible for d sufficiently large, and demonstrated families that are too
large to fit in the smoothable component. Cartwright–Erman–Velasco–Viray [5] studied Hilb8(An)
and found components of lower dimension for n ⩾ 4.

Despite this rather terrifying situation, light can be shed. For Hilbd(Pn), we have a bound on
the dimension of the tangent space at the most singular point due to Briançon–Iarrobino [4]. Fix
n and represent closed subschemes of Pn by ideals I ⊆ k[x0, . . . , xn]. If [I] is a point on Hilbd(Pn)
with tangent space T(I) of maximal dimension, then as d grows, dimk T(I) grows as O(d(2−2/n))
(big O notation, see Theorem 3.0.1 for precise statement).

To show this result, we reduce to Borel fixed ideals, which are in particular monomial ideals (see
Section 3.1), then relate these to generalised Young diagrams. This motivates the following question.

Q: What are the most singular points of Hilbd(X)?

The following was conjectured by Briançon and Iarrobino in 1978.

Conjecture A (Briançon–Iarrobino [4]). The ideal mr = (x0, . . . , xn)
r has the maximum dimension

tangent space among all points in Hilb(
n+r−1
n )(Pn).

Little progress has been made on this conjecture. Ramkumar–Sammartano [27] prove a par-
tial result for Hilbd(P3) by decomposing the tangent space using signatures (see Definition 3.0.2).
Rezaee [29] obtains more refined conjectures for Hilbd(P3), including a necessary condition on I
for the tangent space T(I) to have maximal dimension which implies Conjecture A (see Conjec-
ture 3.4.7). Bejleri–Stapleton [3] use similar techniques to prove the analogous result for punctual
Hilbert schemes, which parametrises the “fat” points of the Hilbert scheme of points. The aim of
this essay is to present some of these results.
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0.1. Motivation and brief survey. The smoothness of Hilbd(S) for non-singular surface S has far-
reaching consequences. Göttsche [12] proves that the Euler and Betti numbers of Hilbd(S) depend
only on S and gives a generating function for both. A surprising application of this formula is in
enumerative geometry. A K3 surface is a compact, simply connected complex manifold of dimen-
sion 2 with nowhere vanishing holomorphic 2-form [26]. K3 surfaces are Calabi–Yau, and have
applications in string theory and mirror symmetry. A fundamental question regarding K3 surfaces
is: how many rational curves lie on it? Let βg be a primitive curve class on a smooth projective K3
surface S with β2g = 2g − 2, and Ng the number of rational curves in class βg. Yau–Zaslow [35]
predicts Ng to satisfy the following generating series∑

g⩾0

Ngq
g−1 =

1

△(q)
,

where △(q) = q
∏
m⩾1(1−q

m)24 is the modular form of weight 12. This was proven by Beauville
[2] by relating the coefficients Ng to Göttsche’s formula for the Euler number e(Hilbg(S)). More
recently, Oberdieck [26] expanded on these results by considering the enumerative geometry of
Hilbd(S) for S a K3 surface. A nice account and some further applications can be found in [13].

Another application is in representation theory and combinatorics. The Macdonald positivity
conjecture is an important result related to Macdonald polynomials, which was proven by Haiman
[15] via a combinatorial result now known as Haiman’s n! theorem. Haiman uses the isospectral
Hilbert scheme which is a reduced fibre product

Xn (C∗)n

Hilbn(A2) Sn(A2)φ

where φ is the Hilbert–Chow morphism (see Section 1.4). The smooothness of Hilbn(A2) is essential
in the proof. A related result is Haiman’s (n + 1)n−1 theorem. An exposition of both is given in
[22].

For higher dimensional X, the picture for Hilbd(X) remains much more obscure. Much work
has been done to understand the different components that may arise [8, 21, 28]. Jilisiejew makes
a summary of various known components other than the smoothable one in [21, Section 5.6].
Cartwright–Erman–Velasco–Viray [5] show that Hilbd(An) is irreducible for d < 8, and for d = 8

irreducible if and only if n ⩽ 3. More results for the reducibility/irreducibility of Hilbd(An) are
collated by Douvropoulos–Jelisiejew–Nødland–Teitler [8] and the bound improved. It is known
that Hilbd(An) is (i) irreducible for d ⩽ 7 and all n, as well as (n, d) = (3, 9), (3, 10), (3, 11); and
(ii) reducible for all n ⩾ 3 and d ⩾ 78, or d ⩾ 8 and n ⩾ 4. The only cases that remain unknown
are n = 3 and 12 ⩽ d ⩽ 77. These results extend to Hilbd(V) for V a general irreducible variety of
dimension n. Whether Hilbd(An) is reduced has also been considered [20, 31], but only isolated
cases are known.

Vakil [33] suggests that unless there is a good reason for a moduli space to be well-behaved,
it will be very badly behaved. This heuristic applies to the Hilbert scheme of points, as demon-
strated by Jelisiejew’s result on Murphy’s law. Hence there is no possibility of constraining the
singularities of Hilbpts(X) for general X. However, Briançon–Iarrobino’s bounds suggest that the
maximally singular points grow with d in a controlled way. One would hope that if these points
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could be understood, then there will be a wider range of applications available. Understanding the
tangent space of Hilbd(An) reduces to a combinatorial problem by standard techniques, and then
the connection to Young diagrams used by Haiman in the proof of the n! theorem is a promising
direction. This is the method considered in [3, 27, 29], and the one this essay will focus on.

0.2. Outline. In Section 1 we define moduli spaces and introduce the Hilbert scheme of points.
In Section 2 we discuss some features of the Hilbert scheme of points and the pathologies that
may arise. We discuss Jelisiejew’s result that Murphy’s law holds up to retraction for some Hilbert
scheme of points. In Section 3 we discuss the tangent space in more detail. We reduce to monomial
ideals, then use Young diagrams to prove Briançon–Iarrobino’s bounds. We present an alternative
proof of Fogarty’s result for smoothness and discuss progress on the conjecture of maximally sin-
gular points. Finally, in Section 4, we present Bejleri–Stapleton’s analogous result for the punctual
Hilbert scheme.

Throughout, we work over a field k, assumed to be algebraically closed of characteristic 0,
although many results will hold more generally. We will often denote R = k[x1, . . . , xn], S =
k[x0, . . . , xn], and the maximal ideal m = (x0, . . . , xn) or (x1, . . . , xn).

Acknowledgments. The author thanks Fatemeh Razaee for setting the essay title, and for insight-
ful guidance.

1. BASIC DEFINITIONS AND FIRST PROPERTIES

1.1. Moduli functors and moduli spaces. We define moduli spaces, mainly following definitions
from [16, Section 1].

Firstly, let us illustrate the principle with an example. Recall that RP1 parametrises lines through
the origin in the plane. The topology of RP1 has information about which lines are “close to-
gether”. We can “survey” this topology by considering a topological space B and a continuous
map f : B→ RP1. If we fix such a map f, then for each point b ∈ Bwe obtain a line corresponding
to f(b). Such an allocation of lines to each point of B is a family of lines over a base B. For instance,
if B = [0, 1] is the unit interval, then this allows us to have a notion of a “path of lines”.

π π

FIGURE 1. Two families of lines over B = [0, 1].

Another way to view such a family of lines is as a topological space X ⊂ B× R2 and π : X→ B,
such that π is the projection to B restricted to X, and for all b ∈ B, π−1(b) is a line through the
origin in R2. Note, we have a universal family, which is the tautological line bundle over RP1. This
is universal in the sense that all families of lines can be uniquely realised as the pullback diagram:
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X E

B RP1
π πtaut

f

By Yoneda’s lemma, the information of all families of lines, i.e. all maps f : B→ RP1, determines
RP1 up to unique isomorphism. In this spirit, a moduli space M (if it exists) is determined by a suitable
notion of families of objects. Moreover, moduli space M parametrising some geometric objects should
have the following features:

(1) The points of M are in bijective correspondence with (equivalence classes of) the objects of
interest.

(2) The topology of M encodes which objects are “close together”.

A moduli problem consists of (i) a class of objects; (ii) a notion of a family of objects over B;
(iii) a notion of equivalence of families. The set of all families over B is denoted S(B). We are
purposefully vague with what we mean by “a class of objects” or “a notion of equivalence” since
there is a broad range of moduli problems we may wish to consider.

Example 1.1.1 (The Grassmanian). Generalising the first example, we can consider families of the
form π : X → B, where X ⊆ B× Rr, π is the projection to B, and for each b ∈ B, π−1(b) is a linear
subspace of dimension ℓ. Two families are equivalent if they are the same. The corresponding
moduli space is the Grassmanian Grℓ(Rr) = Grℓ(r).

Example 1.1.2 (The moduli space of curves). The moduli space of genus g, n-pointed curves Mg,n is
constructed1 by considering families of the form

(X,B, π, σ1, . . . , σn),

where π : X → B is a map2 such that π−1(b) is a smooth, projective, connected, (arithmetic)
genus g algebraic curve for all b ∈ B, and σi : B → X are disjoint sections of π. Two families,
(X, π, σ1, . . . , σn) and (X̃, B, π̃, σ̃1, . . . , σ̃n), are equivalent if there is an isomorphism Φ : X → X ′

such that the following diagram commutes:

X X̃

B

Φ

π π̃

σi σ̃i

Moduli spaces of curves are well-studied. Some excellent expository pieces are Cavilieri’s lec-
ture notes [6] on pointed rational curves and their characteristic classes, and Chan’s article [7] on
using tropical techniques to calculate cohomology.

Although the notion of moduli functors extends to other categories, we will be working over
k-schemes. A moduli functor is a functor F : Sch → Set which sends an object B to S(B)/ ∼, the set
of families over Bmodulo equivalence. Recall that a functor F is representable by M if F is naturally
isomorphic to the functor B 7→ MorSch(B,M).

1Strictly speaking, the (fine) moduli space of curves is a stack or alternatively one can consider a coarse moduli space,
but neither notions are required here.

2Flat and proper.
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Definition 1.1.3. [16, Definition 1.1]. If F is representable by a scheme M, say M is a (fine) moduli
space for the moduli functor F.

If a moduli space M exists, then it has many desirable properties:

(1) Since the set of families over a point are the objects of interest up to equivalence, the k-
points of M classify objects of the moduli problem up to equivalence.

(2) (Universal property). Consider the morphism id : M → M. Via the isomorphism of func-
tors defining M, we obtain an element of F(M), i.e. a family over M. This is the universal
family for the moduli problem. Every family arises as a pullback the universal family.

Remark 1.1.4. (Philosophical interlude). Why do we care about moduli spaces? For one, they are
spaces which have rich structure but are “nice enough” for geometric questions to be tractable.
They form examples of classes of spaces we may be interested in - for instance, the Hilbert scheme
of points of K3 surfaces are some of the only known examples of holomorphic-symplectic varieties
[26]. Even if one is only interested in the geometric objects themselves, considering their moduli
spaces is natural. In particular, many enumerative problems can be solved by considering inci-
dence correspondence and projections to known moduli spaces: see [34, Chapter 27] for 27 lines
in a cubic (a classic example), or [1] for the interpolation problem (a more recent application).

1.2. Hilbert polynomials and Hilbert schemes. Hilbert schemes parametrise closed subschemes
of Pr, or more generally, closed subschemes of a fixed scheme X. However, the moduli problem
considering all families of such subschemes is not representable. It turns out that a sensible thing
to do is to consider flat families with fixed Hilbert polynomial.

Recall that an A-module M is flat if the functor M ⊗A − is an exact functor. A morphism
φ : X→ Y of schemes is flat at p ∈ X if the stalk OX,p is a flat OY,φ(p)-module, and flat if it is flat at
p for all p ∈ X.

Flatness is a kind of “regularity condition” on the fibres of a morphism of schemes. It can
be shown that in reasonable cases3 many important invariants such as degree, dimension, and
arithmetic genus are constant along the fibres Xy = φ−1(y) of a flat morphism φ : X → Y. There
is more on flatness in [34, Chapter 24].

Lemma 1.2.1. A morphism of affine schemes SpecB → SpecA is flat if and only if the corresponding
morphism of rings A→ B is flat.

Proof. Flatness can be checked stalk locally. □

Given a subscheme X = V(I) of Pr, we can associate to it a Hilbert polynomial P. By definition,
P(m) is the dimension of the degree m piece of the graded k-algebra S/I (as a k vector space) for
large m. An introduction to Hilbert polynomials is given in [9, Section 1.9]. The Hilbert polyno-
mial encodes various geometric properties of X:

(1) The degree n of P is the dimension of X.
(2) The leading coefficient of P multiplied by n! is the degree4 d of X.

3Specifically, φ : X→ Y projective, flat morphism with Y Noetherian and connected.
4The degree of a subscheme is the generic number of intersections with a hyperplane. The clash in terminology is

unfortunate.
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Proposition 1.2.2. Suppose B is a Noetherian scheme, and X ⊂ Pr×B a closed subscheme. Let π : X→ B
be the natural projection. For each b ∈ B, Xb can be considered as a closed subscheme of Pnκ(b) with Hilbert
polynomial Pb. If π is flat and proper, then Pb is independent of b.

Proof. See [18, III Theorem 9.9] or [34, Corollory 24.7.1]. □

The functor HilbP,r sends a Noetherian scheme B to the set of families of the form:

X Pr × B

B

φ

i

πB

Here πB is the projection, i is a closed immersion, φ is proper and flat, with fibres Xb having
fixed Hilbert polynoimal P.

Theorem 1.2.3 (Grothendieck). The functor HilbP,r is representable by a projective scheme HilbP,r.

Proof. We sketch the proof, following [16, Theorem 1.9]. Given Z ⊆ Pr with Hilbert polynomial P,
denote the corresponding ideal I(Z) ⊆ S. Let

O(m) =

(
r+m

m

)
, Q(m) = O(m) − P(m).

So O(m) is the dimension of the degree m-piece Sm (as a k-vector space). For large m, Q(m)
is the dimension of the mth graded piece I(Z)m. We assert that there exists an m such that for
all closed subschemes Z, I(Z) is generated by I(Z)m. So Z is determined by I(Z)m. We can
consider I(Z)m as a vector subspace of Sm. Hence each Z corresponds to a point of the Grass-
mannian GrQ(m)(O(m)). The proof finishes by showing that this defines a closed subscheme of
GrQ(m)(O(m)) which represents HilbP,r. □

Definition 1.2.4. The scheme HilbP,r = HilbP(Pr) is called a Hilbert scheme. Denote a point in
HilbP(Pr) corresponding to the subscheme V(I) = Z ⊂ Pr as [Z] or [I].

There are many generalisations, which can be found in [16, Section 1.B].

Definition 1.2.5. Fixing a subscheme X ⊆ Pr, we can define HilbP(X) parametrising subschemes
of Z which are closed in Pr and have Hilbert polynomial P.

Remark 1.2.6. If X is a closed subscheme of Pr, then the above construction defines the Hilbert
scheme of closed subschemes of Xwith fixed Hilbert polynomial.

1.3. Tangent spaces to Hilbert schemes. One virtue of the Hilbert scheme is that we can describe
the tangent space at a point [Z] as the space of global sections of the normal sheaf NZ/X, which is
useful for calculations. Recall that the tangent space to a scheme X at a closed point x with residue
field k, denoted TxX, is the set of morphisms Spec(k[ϵ]/ϵ2) → X which sends the closed point to
x. It has the structure of a k-vector space5.

Example 1.3.1 (Tangent space to An). At a closed point x ∈ An, the tangent space is TxAn ∼= kn.

5We can construct the tangent sheaf or consider the total space as a scheme, but here we will only be concerned with
the vector space structure.
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Example 1.3.2 (Tangent space to the Grassmannian). Consider the Grassmannian Grℓ(r) of ℓ-
dimensional linear subspaces of an r-dimensional vector space V . The tangent space at a point
[W] ∈ Grℓ(r) is isomorphic to Hom(W,V/W). Indeed, the Grassmannian Grℓ(r) can be covered by
open sets of the form

UT = {W ∈ Grℓ(r)|W ∩ T = {0}},

where T ⊆ An is a linear subspace of dimension r − ℓ. Fix W ∈ UT . Then any W ′ ∈ UT can be
identified with an element φ ∈ Hom(W,T) by

φ 7→Wφ = {w+φ(w)|w ∈W}.

Since W is an affine space of dimension ℓ and T is an affine space of dimension r − ℓ, we can
identify UT ∼= Hom(W,T) ∼= Aℓ(r−ℓ). Thus, we may identify the tangent space of UT at [W] with
Hom(W,T). The space T is naturally isomorphic to the quotient V/W and the result follows.

W

Wφ

T

w

w+φ(w)

FIGURE 2. Tangent space to Grassmannian considered as elements of Hom(W,T).

Remark 1.3.3. We can think of V/W as the normal directions to W ∈ Grℓ(r), and the tangent
vector corresponding to φ ∈ Hom(W,V/W) as specifying a deformation of W into a “nearby”
linear subspace by shifting in the normal direction at each point. This idea generalises to Hilbert
schemes.

Definition 1.3.4. Let Z be a closed subscheme of scheme X. The normal sheaf is

NZ/X = HomOZ(I/I
2,OZ) = HomOX(I,OZ),

where I = IZ/X is the ideal sheaf of Z in X.

In particular, if X = SpecA is affine and Z = V(I) for an ideal I ⊆ A, then NZ/X is the sheaf
associated to the A-module HomA(I, A/I).

By the universal property, a morphism Spec(k[ϵ]/ϵ2) → HilbP,r sending the closed point (ϵ) to
[Z] corresponds exactly to a flat family

Z Pr × Spec(k[ϵ]/ϵ2)

Spec(k[ϵ]/ϵ2)

φ

i

π
Spec(k[ϵ]/ϵ2)

whose fibre over (ϵ) ∈ Spec(k[ϵ]/ϵ2) is Z. More generally, for Z a subscheme of X, a flat family
Z ⊆ X× Spec(k[ϵ]/ϵ2) → Speck[ϵ]/ϵ2 whose fibre over (ϵ) is Z is called a first order deformation of
Z in X. We can think of them as infinitesimal deformations of Z.

Theorem 1.3.5. For Z a closed subscheme of X, the space of first order deformations of Z in X is the space
of global sections of NZ/X.
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Proof. We follow [10, Theorem VI-29]. Consider a family Z over Spec(k[ϵ]/ϵ2), not necessarily flat,
with Z(ϵ) = Z.

ForU ⊆ X an affine open, let V = Z∩U and V = Z∩ (U×Speck[ϵ]/ϵ2). LetA be the coordinate
ring OX(U) and I = I(V). Then NZ/X|V is the sheaf associated to HomA(I, A/I). The coordinate
ring on U × Speck[ϵ]/ϵ2 is A ⊗ k[ϵ]/ϵ2. Write elements of this ring as f + ϵg with f, g ∈ A. We
have

I(V) = (f1 + ϵg1, . . . , fk + ϵgk).

By hypothesis, this pulls back to I(V) under the inclusion A→ A⊗ k[ϵ]/ϵ2, so fi generate I(V).

We claim that there exists anA-module homomorphism φ : I→ A/Iwhich sends fi to gi if and
only if V → Speck[ϵ]/ϵ2 is flat.

Indeed, the morphism V → Speck[ϵ]/ϵ2 is flat if and only if the coordinate ring

B = OZ(V) = (A⊗ k[ϵ]/ϵ2)/I(V) = (A/I(V))⊗ k[ϵ]/ϵ2

is flat over k[ϵ]/ϵ2 (Lemma 1.2.1). Since (ϵ) is the only non-zero ideal of k[ϵ]/ϵ2, this is equivalent
to (ϵ)⊗ B→ B being injective. i.e. for f ∈ A,

ϵf ∈ I(V) =⇒ f ∈ I(V).

Suppose there exists a homomorphism φ : I→ A/Iwith φ(fi) = gi. If ϵf ∈ I(V), then

ϵf =
∑

(ai + ϵbi)(fi + ϵgi) =
∑

aifi + ϵ
∑

(aigi + bifi),

for ai, bi ∈ A and
∑
aifi = 0. Then

∑
aigi = φ(

∑
aifi) = 0 and thus f =

∑
bifi ∈ I(V).

Conversely, if B is flat over k[ϵ]/ϵ2, then∑
aifi = 0 =⇒ ϵ

∑
aigi =

∑
ai(fi + giϵ) ∈ I(V).

So
∑
aigi ∈ I(V) and

∑
aifi 7→

∑
aigi gives a well-defined homomorphism I → A/I, as re-

quired.

The result follows from the claim. Indeed, flatness is affine local so Z is a flat family if and only
if it can be covered by flat families V. Given a section of NZ/X, take Z to be given locally by

{f+ ϵφ(f)|f ∈ I(V)},

which is a flat family by the claim. Conversely, given flat Z, we obtain φ by applying the con-
struction in the claim affine locally and gluing. □

Corollary 1.3.6. The tangent space of HilbP(X) at [Z] is given as

T[Z]HilbP(X) = H
0(Z,NZ/X).

Corollary 1.3.7. Given an ideal I of S = k[x0, . . . , xn] and Z = V(I), T[Z](HilbP(Pr)) = HomS(I, S/I).

Remark 1.3.8. A more concrete viewpoint is considered in [16, Section 1.C]. In the proof of Theo-
rem 1.2.3, the Hilbert scheme is constructed as a subscheme of a Grassmannian, with the degree
m part Sm considered as a k-vector space, and ideal I(Z)m corresponding to closed subscheme Z
considered as a vector subspace of Sm for some largem. Applying Example 1.3.2, a tangent vector
in T[Z]GrQ(m)(O(m)) corresponds toφ ∈ Homk(I(Z)m, Sm/I(Z)m). We want to know when such
a tangent vector lies in the tangent space of HilbP(Pr). This motivates the definitions, and such a
line of reasoning can be used to derive Corollary 1.3.6 for this case.
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1.4. The Hilbert scheme of points. We arrive at the main object of interest.

Definition 1.4.1. The Hilbert scheme of points of X, denoted Hilbd(X), is the Hilbert scheme of sub-
schemes of X with constant Hilbert polynomial P = d. i.e. the Hilbert scheme of dimension zero
subschemes of length d.

Remark 1.4.2. Suppose X is quasi-projective, so open in some projective scheme X̄. Then finite
closed subschemes of X are also closed subschemes of X̄. Hilbd(X̄) exists, so Hilbd(X) also exists.

For X = SpecA and Z = V(I), we will often interchange [Z] and [I] for the corresponding point
in the Hilbert scheme. The colength of an ideal I of a k-algebra A is the dimension of A/I as a
k-vector space. We may analogously define the Hilbert scheme of points of a ring A, Hilbd(A), is the
Hilbert scheme of ideals I of colength d. It is clear that Hilbd(An) = Hilbd(R).

The Hilbert scheme of points has many nice properties inherited from being a Hilbert scheme.
It is quasi-projective, universal, and we can describe the tangent space at [Z] ∈ Hilbd(X) in terms
of the normal sheaf. For any scheme X, Hilbd(X) contains points corresponding to subschemes
which are collections of d distinct closed points. So Hilbd(X) is naturally related to the symmetric
product

Sd(X) = Xd/Sd,

the quotient of the d-th power of X by the action of the symmetric group Sd which permutes the
points. More precisely, there is a morphism

φ : (Hilbd(X))red → Sd(X)

called the Hilbert–Chow morphism [11]. This sends a [Z] ∈ Hilbd(X) to the points of its support
{pi}, with multiplicities ai given by the length of OZ,pi . Write such points as

∑
aipi ∈ Sd(X).

Proposition 1.4.3. If X is connected, then Hilbd(X) is connected.

This is true in general for Hilbert schemes, proven by Hartshorne [17]. Fogarty [11] gives a
short proof in the specific case of the Hibert scheme of points using the Hilbert–Chow morphism.
Since Sd(X) is connected, it suffices to show that the closed fibres of φ are connected. If

∑
aipi is

a closed point of Sd(X), with pi distinct points of X and
∑
ai = d, then the set theoretic fibre of

Hilbd(X) over this point is ∏
Hilbai(Zi),

where Zi = SpecOX,pi/m
ai
pi . Thus we reduce to the local case. The result then follows from the

following lemma.

Lemma 1.4.4. [11, Proposition 2.2]. Let A be a finite dimensional, local k algebra. Then Hilbd(A) is
connected for all d.

Proof. Let r = dimk(A), m the maximal ideal of A. Hilbd(A) is a closed subscheme of the Grass-
mannian Grd(A) = Grd(r), considering A as a k-vector space and ideals as vector subspaces, (cf.
proof of Theorem 1.2.3). The units 1 + m form a unipotent group under multiplication. They act
on A via multiplication, giving a map

ρ : 1+m → SL(d).

This in turn defines

1+m → SL

((
r

d

))
→ PGL

((
r

d

)
− 1

)
,
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where for the first map we take ∧dρ, and the second map is the natural projection. This induces
a group action on Grd(A) ⊆ P(∧dA). In words, we are multiplying the basis vectors of a linear
subspace by elements of 1 + m. The fixed points of this action are the quotients A/V such that
(1 + m)V = V , which are precisely the ideals of A. Hence, Hilbn(A) is given by the set of fixed
points.

In general, if we have a unipotent algebraic group G acting on a closed subscheme Z of PN in-
duced by a group homomorphismG→ PGL(N), then the set of fixed points is connected. Fogarty
proves this by induction arguments, which we leave for an interested reader. □

Fogarty shows that for a surface S, Hilbd(S) is exceptionally well-behaved.

Theorem 1.4.5 (Fogarty [11]). Suppose S is a non-singular surface over a field k. Then Hilbd(S) is a
non-singular scheme of dimension 2d.

Proof. Fogarty uses that Hilbd(S) is connected. The open subset of Hilbd(S) corresponding to
distinct points has dimension 2d. Thus Hilbd(S) has at least one irreducible component of dimen-
sion 2d (the smoothable component, see section 2.1). It suffices to show that the tangent space to
Hilbd(S) has dimension ⩽ 2d for any point.

Let [Z] ∈ Hilbd(S) with corresponding sheaf of ideal I, with Supp(Z) = {p1, . . . , pt}. We have
that

T[Z]Hilb
d(S) ∼= HomOS(I,OS/I)

∼=
∏
i

HomOS,pi
(Ipi ,OZ,pi).

We thus reduce to the following commutative algebra result, whose proof we omit. □

Lemma 1.4.6. [11, Lemma 2.5]. Let A be a 2 dimensional regular local ring, I an ideal of A which is
primary for the maximal ideal m. If the length of A/I is equal to d, then the length of HomA(I, A/I) ⩽ 2d.

Remark 1.4.7. Nakajima [25] presents a very short proof of Fogarty’s result using homological
algebra. The exact sequence

0 IX OX OX/IX = OZ 0

gives rise to the exact sequence

0 Hom(OZ,OZ) Hom(OX,OZ) Hom(IZ,OZ)

Ext1(OZ,OZ) Ext1(OX,OZ) Ext1(IZ,OZ)

Ext2(OZ,OZ) Ext2(OX,OZ) Ext2(IZ,OZ) 0.

The Euler characteristic
∑
i Ext

i(IZ,OZ) is independent of Z. Exti(OX,OZ) ∼= Hi(X,OZ) ∼=
Hi(X,Oz(m)) = 0 for sufficient large m (by Serre vanishing). So we have Ext2(IZ,OZ) = 0 and
Ext1(IZ,OZ) ∼= Ext2(OZ,OZ). By duality,

Ext2(OZ,OZ) ∼= (Hom(OZ,OZ ⊗ KX))∨ ∼= (Hom(OZ,OZ))
∨ ∼= (Hom(OX,OZ))

∨.

This has dimension d independent of Z. So dimHom(IZ,OZ) is independent of Z, which implies
smoothness.
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Another alternative proof for S = A2 is given in Section 3.3. For surfaces, Fogarty’s results have
many interesting consequences and the Hilbert scheme of points of a surface is an active area of
study. However, this behaviour is an exception rather than a norm. For instance, we have the
following result.

Proposition 1.4.8. Hilbpts(An) =
∐∞
d=1Hilb

d(An) is singular for all n ⩾ 3.

We defer the proof to Section 2.1. In fact, we will see that Hilbert schemes of points in general
are arbitrarily badly behaved.

2. PATHOLOGIES OF THE HILBERT SCHEME OF POINTS

Law 2.0.1 (Murphy’s Law). Anything that can go wrong, will go wrong.

In general, Hilbert schemes are rather horrible. Mumford demonstrated a component of a
Hilbert scheme which is everywhere non-reduced [23] (see also [16, Section 1.D]). Vakil [33] showed
that any singularity type, finite type over Z, can be realised on some Hilbert scheme, a result
known as Murphy’s Law for Hilbert Schemes. Vakil also showed that Murphy’s law applies to many
other well-known moduli spaces. Heuristically, there are two ways in which this arises. Firstly, it
is often the case that whenever we wish to parametrise some “nice” geometric objects, in order to
obtain a moduli space with nice properties (such as properness), we are forced to throw in some
badly behaved objects too. Secondly, moduli spaces can be rather nasty despite parametrising
perfectly reasonable objects.

Hilbert schemes of points too inherit this pathological behaviour. We briefly discuss some ex-
amples, as well as Jelisiejew’s formulation of Murphy’s law for the Hilbert scheme of points.

2.1. The shape of Hilbd(X). We start with some simple examples to demonstrate some patterns,
before giving examples of more pathological behaviour.

Example 2.1.1. Hilbd(A1). We are looking for I ⊆ k[x] with finite colength(I) = d. Such I are
principal ideals generated by an element of the form

f(x) =

d∏
i=0

(x− ai),

for ai ∈ k not necessarily distinct. So Hilbd(A1) = Sd(A1) and has dimension d.
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When the ai are distinct, the resulting ideal corresponds to d distinct points. We can consider
“fat” points with multiplicities as the result of some of these points “colliding”. In general, we al-
ways have a component of the Hilbert scheme of points containing those subschemes which are d
distinct points or a result of “collisions”. Denote by Hilbd◦ (X) the points in Hilbd(X) corresponding
to d distinct points and let Hilbdsm(X) be its closure.

Proposition 2.1.2 (Jelisiejew [21]). Suppose X is an irreducible, smooth k-scheme. Then Hilbdsm(X) is
integral for all d. Moreover, if X is a quasi-projective variety of dimension n, then Hilbdsm(X) is a quasi-
projective variety of dimension dn.

Remark 2.1.3. We are working over k algebraically closed, but this is not necessary. In general, we
require X to be geometrically irreducible.

Proof. See [21, Proposition 4.29]. If X is projective, then Hilbdsm(X) is a closed subscheme of a
projective scheme and so projective. For X quasi-projective, it is an open set of a projective scheme
X̄, and Hilbdsm(X) is an open set of Hilbdsm(X̄), hence quasi-projective.

Consider the product of X with itself d times, X×d. Let Xd,◦ be the subscheme obtained by
removing the (closed) locus where points in the product coincide. The Hilbert–Chow morphism
Hilbd(X) → Sd(X) restricts to Hilbd◦ (X) → Xd,◦/Sd. This is an isomorphism, andX×d is irreducible
over k, so it follows that Hilbd◦ (X) is irreducible, and so is Hilbdsm(X).

Moreover, Hilbd◦ (X) is smooth. Indeed, considering each distinct point separately, we reduce
to the case that d = 1. Then Hilbd(X) = X, which gives the claim. Hence, Hilbdsm(X) is reduced.
Finally, Hilbd◦ (X) has dimension dn, so Hilbdsm(X) has dimension dn too. □

We call Hilbdsm(X) the smoothable component. We say that a finite closed subscheme Z of a scheme
X is smoothable in X if there exists an irreducible scheme T and a closed subscheme Z ⊆ X× T with
a flat family Z → T such that:

(1) T has a k-rational point t such that Zt ∼= Z.
(2) For η the generic point of T , Zη is a smooth scheme over η.

A finite subscheme over k algebraically closed is smooth over k if and only if it is a disjoint
union of k-points [21, Lemma 4.22]. So (considering base change) we can think of a smoothable
subscheme Z as the limit of d distinct points. Jelisiejew proves the following.

Proposition 2.1.4. [21, Proposition 5.22]. The smoothable component consists precisely of the smoothable
subschemes.

We return to Proposition 1.4.8.

Proof of Proposition 1.4.8. By the above discussion, it suffices to find a d and an I ⊆ S such that
dimk T[I]Hilb

d(An) = dimkHomR(I, R/I) ̸= nd. We take

I = (x1, . . . , xn)
r,

for r ⩾ 2. Then d =
(
n+r−1
n

)
and it is shown in [29, Lemma 1.8] that

dimkHomS(I, S/I) =

(
n+ r− 2

n− 1

)(
n+ r− 1

n− 1

)
=

(
n+ r− 2

n− 1

)
× nd

r
.
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For r ⩾ 2 and n > 2, the right hand side is greater than nd. □

Example 2.1.5. Hilbd(A2). Again we have points corresponding to d distinct points. However,
there are many more ways to have “fat” points. For instance, the ideals

I1 = (x2, x− y) I2 = (x, y2)

are both supported at 0 and have colength 2. As in the proof of Theorem 1.4.5, an often useful
reduction is to ideals I ⊆ k[x, y] that are supported at a single point. The support of such an ideal
Ii ∈ Hilbd(A2) is given by the radical

√
Ii. Since we are considering finite subschemes, this is

maximal. We have that
√
Ii ̸=

√
Ij if and only if Ii and Ij are coprime. If V(I) = ∪mi=1V(Ii), then

I = ∩mi=1Ii. Moreover,

colength(I) =

m∑
i=1

colength(Ii).

In the case that I is supported at a single point, S/I is local, with maximal ideal
√
I. Usefully,

statements about Ii can be extended to statements about I, for instance:

Proposition 2.1.6. [5, Lemma 4.2]. Let I be an ideal in S = k[x1, . . . , xn] with decomposition I =

∩mi=1Ii ∈ Hilbd(An). Then V(I) is smoothable if each V(Ii) ∈ Hilbdi(An) is smoothable.

Restricting our attention to monomial ideals, we can classify using Young diagrams. If I is a
monomial ideal, then S/I has a natural basis of monomials xayb. The collection of these (a, b) we
can put into the diagram. For instance, if I = (x3, x2y, y2), then a monomial basis of S/I is

{1, x, y, x2, xy},

and the associated Young diagram is given in Figure 3.

y xy

1 x x2

FIGURE 3. Young diagram for I = (x3, x2y, y2).

Example 2.1.7. Hilb8(A4). This is an example of a Hilbert scheme of points with a component of
dimension smaller than that of the smoothable component, due to Cartwright–Erman–Velasco–
Viray [5]. It is not hard to see that Hilb8(A4) is reducible by demonstrating an ideal at which
the tangent space has less than the expected dimension of 4 × 8 = 32. The example given in [5,
Proposition 5.1] is

J = ⟨x21, x1x2, x22, x23, x3x4, x24, x1x4 + x2x3⟩,
which has Hom(J, R/J) = 32− 7.

More generally, they prove the following:

Proposition 2.1.8. [5, Theroem 1.2]. For n ⩾ 4, Hilb8(An) has two components: one of dimension 8n
and another of dimension 8n− 7.

We sketch some ideas of the proof. We want to know which [I] are contained in the smoothable
component. Proposition 2.1.6 allows us to reduce to the local case. For (A,m) a local k-algebra, its
Hilbert function is hi = dimkm

i/mi+1. We will denote this by a tuple h⃗. Note that (when finite)
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the dimension of A as a k vector space is
∑
hi. We can consider the subscheme Hd

h⃗
⊆ Hilbd(An),

which consists of those ideals I supported at the origin, and such that S/I is a local k algebra with
Hilbert function h⃗. These are the multigraded Hilbert schemes (see [5, Section 4.2]). We have a closed
immersion Hd

h⃗
→ Hilbd(An).

Lemma 2.1.9. [5, Theorem 4.23]. With the exception of local algebras with Hilbert function (1, 4, 3),
every algebra with d ⩽ 8 is smoothable.

The proof is omitted. Cartwright–Erman–Velasco–Viray prove this using a case by case analysis
of the possible h⃗.

Lemma 2.1.10. [5, Proposition 3.3]. For e ∈ Z>0, the subscheme H1+n+e(1,n,e) is irreducible.

Again we omit the proof. The idea is to show that it is isomorphic to Gr(n+12 )−e(
(
n+1
2

)
) via

functors of points.

In the case of n = 4, d = 8, H8(1,4,3) has dimension 21. We have so far considered ideals sup-
ported at the origin, and we can translate to any point of A4. Heuristically, we obtain an irreducible
component of Hilb8(A4) isomorphic to Hd(1,4,3) × A4, which has dimension 21 + 4 = 25 = 32 − 7.
This is proven in [5, Lemma 5.8]. Combining with Lemma 2.1.9, we obtain Proposition 2.1.8 in the
case n = 4. The case n ⩾ 4 is similar.

As a consequence, any Hilbd(An) for d ⩽ 7 is irreducible. In the reducible case, Cartwright–
Erman–Velasco–Viray also describe the intersection. Few other components of smaller dimension
are known [21, Section 5.6].

Example 2.1.11. There are also families Z ↪→ Hilbd(X) which have dimension larger than dn,
where dimX = n.6 The following construction is adapted from Iarrobino’s in [19].

Consider Hilbd(An). Let m ∈ Z>0 and split the degree m monomials of R = k[x1, . . . , xn] into
two sets

ν1, ν2, . . . , νs and µ1, µ2, . . . , µt,

with s = t, or s = t+ 1.

There are
(
n+m−1
n−1

)
monomials of degree m, so s, t ⩾ mn−1/2(n − 1)!. For each B ∈ Mats×t,

consider

AB =

µ1...
µt

+ B

ν1...
νs

 .
Let IB be the ideal generated by the rows of AB and mm+1, where m = (x1, . . . , xn). Then IB

has colength

d = (# monomials of degree ⩽ m in R) − t =
(
m+ n

n

)
− t ⩽ 2mn/n!,

form ⩾ 2n2.

6This is a different flavour of result to Example 2.1.7. The components that these families are contained in are not
known [21, Chapter 1].
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For B ̸= B ′, we have IB ̸= IB ′ and so we have a family of ideals of dimension

st ⩾ m2n−2/4((n− 1)!)2,

for the given m. Combining these inequalities and setting m sufficiently large, we obtain the
dimension of this family as

st ⩾

(
dn!

2

)(2n−2)n
1

4((n− 1)!)2
= c(n)d2−2/n.

For large d, this is greater than dn, so we have found a family with larger than expected dimen-
sion. Iarrobino uses regular local rings to apply this construction to any non-singular projective
variety of dimension n ⩾ 2.

Example 2.1.12. An explicit example of larger dimension is Hilb78(A3) (see [21, Example 5.44])
found by Iarrabino. The locus irreducible subschemes corresponding to local algebras with Hilbert
function (1, 3, 6, 10, 15, 21, 17, 5) has dimension 235, which is one greater than 3× 78 = 234.

To summarise, we have seen that Hilbd(X) generally has many components, which includes a
smoothable component, and potentially some components of smaller dimension. There may be
families too large to fit inside the smoothable component. Moreover, Reeves [28] shows that every
component of the Hilbert scheme of points intersects with the smoothable one.

Many questions about the shape of Hilbd(X) remain active areas of research, such as which
Hilbd(X) are irreducible or which ideals are contained in the smoothable component (i.e. which
finite algebras over k are smoothable) [21]. We summarise with a picture (see Figure 4).

FIGURE 4. The Bellis Hilbertis, named by Jelisiejew [21, Page 2].
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2.2. Murphy’s Law. Vakil [33] defines what is meant by Murphy’s law applies as the following.
A singularity type is an equivalence class of pointed schemes under the relation generated by:
(X, x) ∼ (Y, y) if there is a smooth morphism (X, x) → (Y, y). We say Murphy’s law applies for a
space M if every singularity type of finite type over Z appears on this space. Vakil demonstrates
many examples of moduli spaces for which Murphy’s law applies.

For the Hilbert scheme of points, Jelisiejew [20] defines and proves the following:

Definition 2.2.1. A retraction is a morphism of pointed schemes (X, x) → (Y, y) with a section.

Definition 2.2.2. Murphy’s Law holds up to retraction for a space M if, for every singularity type G,
there is a representative (Y, y) of G, an open subscheme (X, x) of M, and a retraction (X, x) → (Y, y).

Theorem 2.2.3 (Jelisiejew [20]). Murphy’s Law holds up to retraction for Hilbpts(A16Z ).

Here Hilbpts(X) =
∐∞
d=1Hilb

d(X). This result extends to AnZ for n ⩾ 16.

To understand what this means, we briefly discuss complete local rings. When we want to
understand the “local behaviour” of a scheme at a point as in the sense of differential geometry, it
is often insufficient to consider the local ring, since the Zariski topology is very coarse. We need
to pass to completions. More on completions can be found in [18, Chapter II.9].

Definition 2.2.4. The complete local ring of a scheme X at a point x is the completion ÔX,x of the
local ring OX,x, i.e. the inverse limit of OX,x/mnX,x.

For Noetherian schemes, the complete local ring ÔX,x is regular if and only if OX,x is regular.
We can see how at a regular k point x ∈ X, X “locally7 looks like affine space” using the following:

Theorem 2.2.5 (Cohen Structure Theorem8). If A is a complete regular local ring of dimension n con-
taining some field, then A ∼= k[[x1, . . . , xn]].

Example 2.2.6. Suppose X plane nodal cubic curve given by y2 = x2(x + 1). Then the complete
local ring at the origin is k[[x, y]]/(xy), which corresponds to the fact that near the origin, X looks
like two crossing lines.

The following is a corollary of Jelisiejew’s result.

Corollary 2.2.7. [20, Corollary 5.1]. Let M = Hilbpts(A16Z ). For every singularity type G, there exists
a representative (Y, y) of G and a point on M with complete local ring ÔY,y[[t1, . . . , tr]]/I for some I such
that ÔY,y ∩ I = 0.

Proof. By Murphy’s law up to retraction, we have a retraction r : (M, x) → (Y, y) and a section
s : (Y, y) → (M, x). This induces a homomorphism of local rings sy : OY,y → OM,x, which is
injective since s is a section. M is finite type of Z, so this implies OX,x is finitely generated over
OY,y. Now take completions. □

Remark 2.2.8. Heuristically, X → Y is smooth if X is given by locally adding smooth coordinates
to Y (see Figure 5). We may think of two singularity types being equivalent up to retraction if we
“add coordinates” that have relations between them. For instance, with X = V(xy) ⊆ A2, and any
f : X → Y, the projection X × Y → X is a retraction, with section given by (id, f). So for k-points
p ∈ Y and o = V(x, y) ∈ X, the singularity types (X, o) and (X × Y, (p, o)) are equivalent up to
retraction. We have that OX×Y,(p,o) ∼= OY,p[x, y]/(xy). We can think of x, y as the new coordinates.

7For k = C this is local in the sense of the analytic topology.
8This is a slightly different formulation to usual. See [9, Theorem 7.7].
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FIGURE 5. NodeX = V(xy) ⊆ A2 has singularity at origin. The projectionX×A1 →
X is smooth, so (X, 0) ∼ (X× A1, (0, 0)).

As a consequence, we can show the existence of many types of pathological behaviour on
Hilbpts(AnZ ).

Corollary 2.2.9. Hilbpts(AnZ ) and Hilbpts(AnC) are non-reduced for n = 16.

Proof. Apply Theorem 2.2.3 with [Spec(Z[u]/u2), (u)]. It suffices to show that if f : X → Y is a
retraction with x ∈ X, y = f(x), then y a non-reduced point if and only if x is non-reduced. This
is clear since we have an injective map on stalks sy : OY,y → OX,x. The second result follows by
base change. □

We mention some of the ideas of the proof of Theorem 2.2.3. Vakil’s method to prove Mur-
phy’s law for Hilbert schemes is a “bootstrap” method, which starts with Murphy’s law for the
incidence scheme of lines and points, then successively relates different moduli spaces to each other.
Jelisiejew’s strategy is an extension of this. There is a Gm action on ArZ which gives an action on
H = Hilbpts(ArZ). The generalised Białynicki–Birula decomposition gives a scheme H+

Z with morphism
θ : H+

Z → H and a retraction π : H+ → HGm . Vakil’s results can be used to show that Murphy’s
law holds for HGm , but the problem is that θ may not be an open immersion. Jelisiewjew uses
TNT frames to refine this argument into a proof.

Remark 2.2.10. Jelisiejew’s proof is not constructive, although an example of non-reducedness
was shown for Hilb5082(A14) (see [20, Example 5.4]). For an example with smaller d, Szachniewicz
[31] uses similar methods to show that Hilb13(A6) is also non-reduced.

3. BOUNDS ON DIMENSION AND MOST SINGULAR POINTS

The singular points of an integral k-scheme X of finite type are those points pwhere dimk TpX >
dimX, so we can view this dimension as some measure of singularity. Murphy’s law says that we
may have (up to retraction) arbitrary singularities on Hilbpts(X). However, we do have a bound
on the singularities of Hilbd(X) which varies with d, given by Briançon–Iarrobino.

Theorem 3.0.1 (Briançon–Iarrobino [4]). There are non-zero constants a(n) and b(n) depending only
on n such that if [I] is a point on Hilbd(Pn) with maximum dimension tangent space, then

a(n)d(2−2/n) < dim T(I) < b(n)d(2−2/n).
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The lower bound is given by the families discussed in Example 2.1.11. In [4], Briançon–Iarrobino
reduce the problem of finding the maximum dimension tangent space to the case of Borel fixed
ideals. In particular, these are monomial ideals. We discuss this in Section 3.1 and Section 3.2.

In Section 3.4, we discuss Conjecture A, which is that the maximum dimension tangent space
is obtained at mr. Note that Conjecture A is equivalent to the analogous statement for m =

(x1, . . . , xn) ⊆ R considered as a point of Hilb(
n+r−1
n )(An). Ramkumar–Sammartano [27] obtain

a partial result for Hilbd(A3) by splitting the tangent space into parts. For I a monomial ideal, T(I)
has a natural Zn-grading, which we describe in Remark 3.3.1.

Definition 3.0.2. [27, Definition 0.1]. A signature is a non-constant n-tuple on the two element set
{p, n}. Here p will mean non-negative, n will mean negative. Let S be the set of signatures and
for each s ∈ S, let

Zns = {(α1, . . . , αn) ∈ Zn : αi ⩾ 0 if si = p, αi < 0 if si = n)},

Ts(I) =
⊕
α∈Zns

|T(I)|α ⊆ T(I),

where |T(I)|α is the α graded component of T(I) of degree α ∈ Zn.

Theorem 3.0.3 (Ramkumar–Sammartano [27]). Let d =
(
r+2
3

)
and [I] ∈ Hilbd(A3) be a Borel-fixed

ideal. Then for s ∈ {ppn,nnp, pnp, npn} and any r ⩾ 1,

dimk Ts(I) ⩽ dimk Ts(m
r),

and in each case, equality occurs if and only if I = mr.

3.1. Reduction to Borel fixed points. In the proceeding discussion, we work with X = Pn. The
case of An immediately follows. We follow [9, Chapter 15], which has more detailed discussions.
Let G = GL(n+ 1, k). This acts on S = k[x0, . . . , xn] via

g ·
∏
j

x
aj
j =

∏
j

(∑
ij

gijxi
)aj .

The Borel subgroup B of G is the subgroup of (invertible) upper triangular matrices.

A monomial order is a total ordering on monomials of S satifying: for all n ̸= 1 a monomial of S
and m1,m2 monomials with m1 > m2, have nm1 > nm2 > m2. We can extended this notation
to terms (i.e. umwhere u ∈ k andm a monomial) by saying um1 > vm2 form1 > m2. This is not
an ordering, or even a partial ordering, but useful notation.

Example 3.1.1. (1) The lexicographical ordering is given by xa00 . . . xann > xb00 . . . xbnn if one of the
following occurs: (i)

∑
ai >

∑
bi; or (ii)

∑
ai =

∑
bi and ai < bi with the first index i

for which ai ̸= bi.
(2) The reverse lexicographical ordering is similar to above, but with the last index instead of the

first.
(3) A weight function is λ : Zn → Z linear. From λ, we obtain a partial order, the weight order

associated to λ, given by xa >λ xb if λ(a) > λ(b).

Remark 3.1.2. While the discussion holds for any monomial ordering, the reverse lexicographical
ordering has desirable properties which are useful for applications [9, Chapter 15.7].
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Definition 3.1.3. Given a monomial ordering > and f ∈ S, the initial term of f, denoted in>(f) or
in(f), is the greatest term of fwith respect to this ordering. For an ideal I of S, in>(I) = in(I) is the
ideal generated by in(f) for f ∈ I.

Example 3.1.4. Let n = 3. For convenience, we denote x = x0, y = x1, z = x2, and P =
Proj k[x, y, z]. Consider the ideals I1 = (x3, x2y − y3, y2z − xyz) and I2 = (x − z, y − z), and
let I = I1I2. Then V(I) is supported at 2 points, [0 : 0 : 1] and [1 : 1 : 1]. With respect to the reverse
lexicographical ordering,

in(I) = in(I1) in(I2) = (x4, y4, xy3, xy2z, x3y, y3z),

which is supported at [0 : 0 : 1].

Remark 3.1.5. We can think of in(I) as a flat limit. For any I there exists a weight λ such that
in>λ(I) = in>(I) (proof omitted, see [9, Proposition 15.16]). For t ̸= 0, consider the action of
the diagonal matrix δ with diagonal entries (t−λ0 , . . . , t−λn). For t ̸= 0, δ is invertible and S/I
is isomorphic to S/δ(I). As t → 0, δ(I) limits to in>λ(I). In fact, this describes a flat family of
points in Hilbd(Pn) which limits to [in(I)]. Since in(I) is in the smoothable component, which is
connected, this is another proof of the connectedness of Hilbd(An). More details can be found in
[9, Chapter 15.8].

Remark 3.1.6. We can view this geometrically. Recall that Pn is a toric variety and there are 1
parameter subgroups given by

χ : C∗ → Pn, t 7→ [1 : tλ1 : . . . : tλn ].

These act on Pn via the torus action. We can consider what happens when t tends to 0 (the flat
limit). This sends a point in Pn to one of the distinguished points, depending on λi.

Fix a monomial ordering >. Let U ⊆ G be the subgroup consisting of upper triangular matrices
with 1s down the diagonal.

Theorem 3.1.7 (Generic initial ideal). Let I ⊆ S be a homogeneous ideal. There exists a Zariski open U
which is Borel fixed, meeting U non-trivially, and a monomial ideal J such that for all g ∈ U, in(gI) = J.

Definition 3.1.8. With I, J as above, J is called the generic initial ideal of I, denoted Gin(I).

Proof. We follow [9, Theorem 15.18]. Consider the degree ℓ parts Iℓ of I and Sℓ of S. Let f1, . . . , ft
be a basis for Iℓ. Let h = (hij) be a matrix of indeterminates. Recall that the symmetric product of
Sℓ is given by

∧tSℓ = Spank
(
{a1 ∧ . . .∧ at|ai ∈ Sℓ}/ ∼

)
,

where a1∧ . . .∧at ∼ σ(a1)∧ . . .∧σ(at) for all σ ∈ St. Call an element of the formm1∧ . . .∧mt,
where mi are monomials of degree ℓ, a monomial of ∧tSℓ. For m ̸= 0, we may write this so that
m1 > . . . > mt and we can order such expressions lexicographically.

Then h(f1)∧ . . .∧h(ft) is a linear combination of monomials with coefficients that are polyno-
mials in the hij. Suppose that m1 ∧ . . . ∧mt is the earliest monomial that appears (with respect
to the ordering) with non-zero coefficients. Let the coefficent be pℓ(h11, . . . , hrr), and let

Uℓ = {g = (gij) ∈ G|pℓ(g11, . . . , grr) ̸= 0}.

By definition, the degree ℓ part of in(gI) is (m1, . . . ,mt) if and only if g ∈ Uℓ. Let Jℓ be the
subspace of Sℓ spanned bym1, . . . ,mt.
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Claim that J = ⊕Jℓ is an ideal (i.e. closed under multiplication). It suffices to show that for all ℓ,
S1 · Jℓ ⊆ Jℓ+1. Since Uℓ, Uℓ+1 are dense open, there exists a g ∈ Uℓ ∩Uℓ+1. Then in(gI)ℓ = Jℓ and
in(gI)ℓ+1 = Jℓ+1. As in(gI) is an ideal, the assertion follows.

Finally, we show that U = ∩∞
ℓ=1Uℓ is Zariski open and dense in G. In fact, this intersection is

finite. Suppose that J is generated by elements of degree ⩽ e. Then given g ∈ ∩eℓ=1Uℓ, in(gIℓ) = Jℓ
for all ℓ ⩽ e. Thus in(gI) ⊇ J, and considering the dimensions of the degree ℓ parts (as k vector
spaces), we conclude that in(gI) = J. Thus U = ∩eℓ=1Uℓ and result follows.

□

Proposition 3.1.9. For k an infinite field, the generic initial ideal is Borel fixed i.e. for all g ∈ B,

g(Gin(I)) = Gin(I).

Proof. This is from [9, Theorem 15.20]. Replacing I by gI if necessary, we may assume in(I) =
Gin(I). The Borel subgroup B is generated by (i) diagonal matrices δwith diagonal entries δi; and
(ii) γij, where γij has 1s down the diagonal, a single 1 in position i, j with i < j, and 0 elsewhere.
The diagonal matrices fix all monomials, so it suffices to check that

γi,j(in(Iℓ)) = in(Iℓ).

Write γ = γi,j. Let f1, . . . , ft be a basis for Iℓ ordered by > and consider f = f1 ∧ . . .∧ ft. Have
that in(f) = in(f1)∧ . . .∧ in(ft). If γ(in(Iℓ)) ̸= in(Iℓ), then γ in(f) ̸= in(f). Note that terms of γ in(f)
other than in(f) are strictly greater than in(f). Let am be a term in γ in(f), with 0 ̸= a ∈ k and
m ∈ ∧tSℓ.

From the proof of Theorem 3.1.7, in(I)ℓ = Jℓ is spanned bym1, . . . ,mt where

m1 ∧ . . .∧mt = max{n1 ∧ . . .∧ nt|n1 ∧ . . .∧ nt ∈ in(∧t(gIℓ)), g ∈ G}.

This monomial is in(f), and hence for all g, m should appear in g(f) with coefficient 0. We will
show that for some diagonal matrix δ ∈ G,m appears with non-zero coefficient in γδf, which gives
a contradiction. To do this, decompose f as follows. For n = an1 ∧ . . .∧ nt, let the weight of n be
w =

∏
ni. Let fw be the sum of all terms in f having weight w.

Let w0 be the weight of in(f). Claim that in(f) is the unique term with weight w0 in f. Indeed,
if n1 ∧ . . . ∧ nt is any other term, then in(f1) ⩾ n1, . . . , in(ft) ⩾ nt and so

∏
in(fi) ⩾

∏
ni with

equality only if n1 ∧ . . .∧ nt = in(f1)∧ . . .∧ in(ft).

For a diagonal matrix δ with diagonal entries (δ0, . . . , δn), we have that δ(xi) = δixi, and so
δ(f) =

∑
w(δ0, . . . , δt)fw. Hence

γδ(f) =
∑

w(δ0, . . . , δt)γfw

= w0(δ0, . . . , δt)γ in(f) +
∑
w ̸=w0

w(δ0, . . . , δt)γfw.

Then writing aw for the coefficint ofm in γfw, the coefficient ofm in γδ(f) is

(1) aw0w0(δ0, . . . , δt) +
∑
w ̸=w0

aww0(δ0, . . . , δt).

Have aw0 = a, so (1) is a non-zero polynomial in δi. Therefore there must exists a δ where it is
non-zero, which gives the required contradiction. □
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Remark 3.1.10. It is clear from the definition of Gin(I) that it is a monomial ideal. It also true in
general that any ideal fixed by B is generated by monomials [9, Theorem 15.23].

An ideal I is strongly stable if for any monomial xα ∈ I with αj > 0, we have xi
xj
xα ∈ I for all

i < j. In characteristic 0, Borel fixed ideals are exactly strongly stable ideals. We only need one
direction, which we prove now.

Proposition 3.1.11. A Borel-fixed (monomial) ideal is strongly stable.

Proof. Apply the transformation xj 7→ xi + xj. Since I is a monomial ideal, every monomial in the
resulting sum is contained in I. □

Proposition 3.1.12. Suppose I ⊆ S is a homogeneous ideal. Then I and Gin(I) have the same colength.

Proof. In fact, S/I and S/Gin(I) have the same Hilbert polynomial (see [9, Theorem 15.3] and [9,
Theorem 15.26], from which the proof is adapted). Note that g is an invertible k-linear map, so
applying g to S, we see that S/I and S/gI have the same dimension. Hence we may assume that
in(I) = Gin(I). Let B be the set of monomials not in in(I). Claim that this gives a basis for S/I.

We will use that any subset of monomials has a least element. This follows from the fact S is
Noetherian - if we take a set of monomials, the ideal it spans is generated by a finite subset of
these monomials. Take the minimal element of this finite set.

Suppose B doesn’t span. Let g ∈ S/I be an element not in the span of Bwith representative in S
having minimal initial element. Any element of I can be written f = a in(f) + f ′ where f ′ consists
smaller terms and 0 ̸= a ∈ k. If g ∈ S contains a term b in(f) with 0 ̸= b ∈ k, then it can be replaced
with −bf ′/a with smaller initial element, which contradicts minimality. Thus f must be spanned
by B.

For linear independence, suppose that

p =
∑

uimi = 0 ∈ I,

with ui ∈ k,mi ∈ B. Then in(p) ∈ in(I) is one of themi, which gives a contradiction.

Therefore colength(I) = |B| = colength(in(I)) as required. □

Proposition 3.1.13. dimk T(I) ⩽ dimk T(Gin(I)).

Proof. Recall that T(I) = HomS(I, S/I). Firstly, we show dimk T(I) = dimk T(gI) for all g ∈ G.
Indeed, consider a k-linear map HomS(I, S/I) → HomS(gI, S/gI), which sends an element v ∈
HomS(I, S/I) to w ∈ HomS(gI, S/gI) defined as

w(g(f)) = gv(f).

This is well defined since w(gf) ∈ gI if and only if v(f) ∈ I, and S linearity is from the fact
g(ff ′) = g(f)g(f ′). Since g is invertible, the process can be reversed and the claim follows.

So we may assume that Gin(I) = in(I). Since in(I) is a flat limit (see Remark 3.1.5). The result
follows by upper-semi continuity of the dimension of the tangent space (see [18, III Theorem
12.8]). □

Corollary 3.1.14. The maximum dimension of the tangent space at a point of Hilbd(Pn) is obtained at a
Borel fixed ideal. In particular, at a monomial ideal.
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3.2. Young diagrams and bounds on dimension. Recall in Example 2.1.5, we represented mono-
mial ideals in Hilbd(A2) by Young diagrams. More generally, we can visualise monomial ideals
in Hilbd(An) or Hilbd(Pn) for n ⩾ 2 by considering generalised Young diagrams made from n-
dimensional hypercubes. Generalised Young diagrams can be considered as generalised partitions
of d. We will often write λ for both the partition and the Young diagram.

Note that if λ is a Young diagram considered as a subset of Zn⩾0, then E = Zn⩾0 ∖ λ satisfies
E+ Nn = E.

Definition 3.2.1. The corners9 of E are the smallest subset F of E such that E = F+ Zn⩾0.

For a monomial ideal I, the corners of its Young diagram gives a minimal generating set [4,
Section II]. An example is given in Figure 6.

λ

E

x4

x3y2

xy3

y4

FIGURE 6. Young diagram in blue and corners in green for I = (x4, x3y2, xy3, y4).

The length of an ideal I in a Noetherian ring is the minimal number of generators. We can bound
the dimension of the tangent space at T[I]Hilb

d(A) in terms of the length of I.

Proposition 3.2.2. Suppose that I ∈ Hilbd(An) has length ℓ(I). Then dim(T[I]Hilb
d(An)) ⩽ ℓ(I)d.

Proof. Any morphism of S-modules I → S/I is determined by the image of the generators of I.
Also, S/I has dimension d. The result follows. □

This is a very rough bound which may be met, but is certainly not an equality.

Example 3.2.3. Consider I = (x2, y2) ⊆ k[x, y]. The corresponding Young diagram is in Figure 7.

y xy

1 x

FIGURE 7. Young diagram for I = (x2, y2).

Then d = colength(I) = 4. By Fogarty, we know that the dimension of the tangent space is
8 = 2× 4. We can see this explicitly by defining a morphism I→ S/I which maps x2, y2 to any of

9These are called staircases in [4].
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the monomial basis of S/I. There are no relations between x2 and y2 so any such choice will give
a valid morphism.

Example 3.2.4. Consider I = (x2, xy, y2), Young diagram given in Figure 8.

y

1 x

FIGURE 8. Young diagram for I = (x2, xy, y2).

We know that the bound of 3 × 3 is not met by Fogarty. We can see this explicitly. We cannot
send x2 to 0 and xy to 1, since the first implies x2ymust be sent to 0 but the second implies it must
be sent to x.

We wish to prove the upper bound of Theorem 3.0.1. Without loss of generality, we may replace
Pn with An. The following proposition, combined with the reduction to Borel fixed ideals and
Proposition 3.2.2, gives the result.

Proposition 3.2.5. There are constants b(n) depending only on n, such that if I is a colength d monomial
ideal of S that is strongly stable, then the length ℓ(I) of I satisfies ℓ(I) ⩽ b(n)d1−1/n.

Proof. This is a modified version of [4, Proposition II.1]. Let v be the largest integer such that for
m = (x1, . . . , xn), I ⊆ mv but I /∈ mv+1. On the Young diagram, we can see this as the maximal
diagram of the from mv contained inside λ. Since I is strongly stable, (v, 0, . . . , 0) is not in λ. The
colength

(
v+n−1
n

)
of mv is smaller than colength of I, so

(2) vn/n! ⩽ ((v+ 1) . . . (v+ n− 1))/n! ⩽ d.

We induct on n. For n = 2, the number of corners is at most v+ 1, so it follows that

ℓ(I) ⩽ (2d)1/2 + 1 ⩽ (21/2 + 1)d1/2,

and we may take b(2) = 21/2 + 1.

Suppose we have the result in dimension n − 1. We “slice” the Young diagram of I. Write
ℓ = ℓ(I). For i = 0, . . . , v− 1, let

λi = λ ∩ ({i}× Zn−1⩾0 ),

di = size of λi,

Fi = staircase of λi ∈ Zn−1⩾0 ,

ℓi = cardinality of Fi.

Then d =
∑
di and ℓ ⩽

∑
ℓi + 1. By the inductive assumption,

ℓ ⩽ b(n− 1)

(∑
d
1−1/(n−1)
i

)
+ 1.

The map x 7→ x(1−1/(n−1)) is concave, so(∑
d
1−1/(n−1)
i

)
/v ⩽

((∑
di

)
/v

)1−1/(n−1)
=⇒

∑
d
1−1/(n−1)
i ⩽ v1/(n−1)d1−1/(n−1).
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Substituting in (2), we obtain∑
d
(1−1/(n−1))
i ⩽ (n!)1/(n(n−1))d1−1/n,

and hence
ℓ ⩽ b(n− 1)(n!)1/(n(n−1))d1−1/n + 1.

Thus we may take b(n) = b(n− 1)(n!)1/(n(n−1)) + 1, and this completes the inductive step. □

Remark 3.2.6. Briançon finds explicit values of b(n) in [4], but these are not optimal. A better
upper bound of b(3) = 3.64 is found for n = 3, see [27, Theorem 4.2].

3.3. Application to surfaces. The reduction to Borel fixed points, combined with the connection
between Hilbert schemes of points and Young diagrams can be used to give an alternative proof
for the smoothness of Hilbd(A2). This proof is given in [14], and also explained in [30, Chapter
18.2].

By our discussion in Section 3.1, we can reduce again to monomial ideals I. Haiman uses co-
ordinates around [I] defined by considering Hilbd(A2) as a subscheme of the Grassmannian (cf.
proof of Theorem 1.2.3). Let Vm be the vector subspace in k[x, y] spanned by the monomials of
degree at most m. Set m > d. The dimension d subspaces W ⊂ Vm for which the monomials
outside I span Vm/W constitute an affine subvariety U of Grd(Vm) which contains I. Any such
W has a unique k-basis consisting of polynomials of the form

(3) xrys −
∑
h,k∈λ

crshkx
hyk,

for h, k ∈ λ, and r, s /∈ λ.10 The crshk form coordinates on the Grassmannian.

To obtain an open affine neighbourhood U of [I] in Hilbd(A2) we need to consider those W
which come from intersecting Vm with an ideal J. Then crshk cannot be chosen arbitrarily since J is
closed under multiplication by x and y. Multiplying (3) by x and expanding again, we obtain

(4) xr+1ys −

( ∑
h+1,k∈λ

crshkx
h+1yk +

∑
h+1,k/∈λ

crshk

∑
h ′,k ′∈λ

ch+1,kh ′k ′ xh
′
yk

′
)
.

Equating the coefficients with those in

xr+1ys −
∑
h,k∈λ

cr+1,shk xhyk

gives relations among the crshk. Similarly, we obtain relations by multiplying (3) by y. These
relations cut out U as a closed subscheme of SpecC[{crshk}]. The point [I] is given by the maximal
ideal m = (crshk). Since the cotangent space is given by ΩHilbd(A2),[I] = m/m2, we can represent a
basis of the cotangent space as arrows with tail at r, s ∈ λ and head at box h, k /∈ λ. We can find
congruences modulo m2 as follows: note that in (4) the double sum lies inside m2. Hence moving
the tail and head of any arrow one box to the right doesn’t change the arrow’s class modulo m2.
Thus, we are free to move the arrow to the right. Similarly, we may move arrows vertically.

10Here we write h, k ∈ λ if xhyk /∈ I (i.e. h, k ∈ λ if the box at coordinates h, k are in the corresponding Young
diagram).
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Remark 3.3.1. For n > 2 we can similarly consider coordinates around [I] for I a monomial ideal
given by cr1,...,rnh1,...,hn

, which restrict to elements of m/m2. By the same analysis, the vectors

(h1 − r1, . . . , hn − rn)

are fixed under addition by elements in m2, so this defines a grading on T(I).

Ramkumar–Sammartano [27] give a neat presentation. Write Ĩ = Zn⩾0∖λ. We will say that a path
between two points α, β ∈ Zn is a sequence α = γ(0), . . . , γ(m) = β such that ||γ(i) − γ(i−1)|| = 1
for all i. A subset U ⊆ Zn is connected if for any two points in U, there is a path between them. For
V ⊆ Zn, maximal connected subsetU ⊆ V is called a connected component. A setU ⊆ Zn is bounded
if it is a finite set.

Recall the definition of signature in Definition 3.0.2. Now we have

Proposition 3.3.2. If [I] ∈ Hilbd(An) is a monomial point and n ⩾ 2, then T(I) = ⊕s∈STs(I).

Proof. The content of the proposition is that we can exclude the constant tuples. No arrow exists
with signature p . . . p, and any arrow with signature n . . . n can be moved horizontally and verti-
cally until it crosses the axis, so is equivalent to 0. Hence Tp. . . p(I) = Tn . . . n(I) = 0, as required. □

Proposition 3.3.3. [27, Proposition 1.5]. Let α ∈ Zn and [I] ∈ Hilbd(An). The set of bounded connected
components of (Ĩ+ α)∖ Ĩ corresponds to a basis of |T(I)|α.

Proof. We give an alternative proof following the discussion above. Consider an arrow in Zn with
tail in Ĩ and head in λ, with direction vector α. This corresponds to an element of (Ĩ + α) ∖ Ĩ (the
position of the head). The unbounded components correspond to arrows whose head crosses the
axes, which correspond to zero vectors. If two arrows have heads in the same bounded component
of (Ĩ + α) ∖ Ĩ, then they can be moved onto one another via a path with all intermediate arrows
having tail in Ĩ and head in λ. Hence they are equivalent. Any arrows in different bounded
components are not equivalent, since they cannot be translated onto each other in this way. □

Remark 3.3.4. Ramkumar–Sammartano’s proof is explicit. For each such bounded component U,
can define a map φU : I → S/I by setting φU(xβ) = xα+β if α + β ∈ U and 0 otherwise. It can
be shown that this is S linear. Conversely, suppose ψ ∈ |T(I)|α. If α + β,α + γ lie in the same
connected component U ⊆ (Ĩ + α) ∖ Ĩ, then there exists cψ,U ∈ k such that ψ(xβ) = cψ,Ux

α+β

and ψ(xγ) = cψ,Uxα+γ. They then deduce that ψ =
∑
U cψ,UφU.

We return to the smoothness of Hilbd(S). By the discussion of the smoothable component in
Section 2.1, it suffices to show that dimk T(I) ⩽ 2d for all I.

Proposition 3.3.5. Let I be a monomial ideal of S. Then dimk T[I]Hilb
d(A2) ⩽ 2d.

Proof. The proof is inspired by [30, Proposition 18.14], modified to use Ramkummar–Sammartano’s
result. We consider the possible bounded components of (Ĩ + α) ∖ Ĩ as α varies in Z2. If α has
signature pp or nn, then there are no bounded components. There are two cases remaining.

(1) If α has signature np, then take the top left element of each bounded component U of
(Ĩ + α) ∖ Ĩ. So U corresponds to an arrow with head lying just inside λ in column h and
tail lying just right of λ in row k.
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(2) If α has signature pn, then for each bounded component U, take the bottom right most
element of U. This corresponds to an arrow whose head lies just inside row k of λ and
whose tail lies just above column h.

Examples of both cases are given in Figure 9. For each type, (h, k) ∈ λ determines the α and the
component U uniquely. Thus, there can be at most d basis elements of each type. The dimension
bound follows.

λ

λ

λ+ α

λ+ α

FIGURE 9. Young diagram for I = (x6, x3y2, xy3, y5), with bounded components
of (Ĩ + α) ∖ Ĩ shown for α = (−1, 1) and α = (1,−2). We can also consider these
elements of T(I) as arrows.

□

3.4. Results in P3 and further conjectures. We now sketch a proof of Theorem 3.0.3, as given by
Ramkummar–Sammartano [27].

Lemma 3.4.1. Let r ∈ Z⩾0. We have

dimk Tppn(m
r) = dimk Tpnp(m

r) = dimk Tnpp(m
r) =

(
r+ 3

4

)
dimk Tpnn(m

r) = dimk Tnpn(m
r) = dimk Tnnp(m

r) =

(
r+ 2

4

)
.

Proof. See [27, Lemma 1.5] and [27, Lemma 3.5]. We give an alternative presentation.

Consider the Young diagram of I = mr. We calculate dimk Tpnp. The rest is similar. We must
have |αi| < r for (Ĩ + α) ∖ Ĩ to be non-empty and the possible cases are α1 = 0, . . . , r− 1. Let
Sx = {x}× R× R be a “slice” of the diagram. Then for any x = 0, . . . , r− 1, we have that λ ∩ Sx is
a staircase of size r− x.

For x = 0, . . . , r consider

((Ĩ+ α)∖ Ĩ) ∩ Sx = ((Ĩ+ α) ∩ Sx)∖ (Ĩ ∩ Sx).

Then (Ĩ+α)∩Sx is a staircase of size r−x and ((Ĩ+α)∩Sx) is a staircase of size r−x+α1 if this
is non-negative, and is empty otherwise. If it is nonempty, then we can slide the larger staircase
up and left, as in Figure 10.
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FIGURE 10. The slice I = m5 ∩ S2 is a staircase. The bounded components of
(Ĩ+ α)∖ Ĩ is shown for α = (2,−3, 0), (2,−4, 1), (2,−5, 3).

This gives
(
r−x+1
2

)
bounded components. So in total

dimk Tpnp =

r−1∑
α1=0

r−2∑
x=α1

(
r− x+ 1

2

)
=

r−1∑
α1=0

(
r+ 2− α1

3

)
=

(
r+ 3

4

)
.

□

Example 3.4.2. Consider I = (x, y, z)4 ⊆ k[x, y, z], α = (−1, 0, 0). Then Ĩ and Ĩ + α are shown in
Figure 11, along with the slice at x = 0.

x

y

z

{x = 0}

FIGURE 11. I = m3, α = (−1, 0, 0). Ĩ+α is indicated by the blue circles. Each black
point that is not circled is a bounded component of (Ĩ+ α)∖ Ĩ. The slice at x = 0 is
shown on the right.

Lemma 3.4.3. [27, Theorem 2.4]. Let [I] ∈ Hilbd(A3) be a monomial point. We have

dimk Tppn(I) = dimk Tnnp(I) + d

dimk Tpnp(I) = dimk Tpnp(I) + d

dimk Tnpp(I) = dimk Tpnn(I) + d.

We omit the proof.
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Lemma 3.4.4. [27, Proposition 3.1]. Let I be a monomial ideal, and consider the k[z] decomposition of I,

I =
⊕
i,j

xiyj(zbi,j).

For each α1, α2 ⩾ 0, we have

(5)
∑
α3<0

dimk |T(I)|(α1,α2,α3) ⩽
∑

i⩾α1,j⩾α2

(bi,j −max{bi+1,j, bi,j+1}).

Proof. We present Ramkummar–Sammartano’s proof. Fix α1, α2 non-negative and define

C =
⋃
α3<0

Cα3 =
⋃
α3<0

{bounded components of (Ĩ+ (α1, α2, α3))∖ Ĩ}

S =
⋃

i⩾α1,j⩾α2

Si,j =
⋃

i⩾α1,j⩾α2

{(i, j, k) ∈ λ : (i+ 1, j, k), (i, j+ 1, k) ∈ Ĩ}.

For each i, j, have that
|Si,j| = bi,j −max{bi+1,j, bi,j+1}

Indeed, considering a slice of Zn with z = k, we may think of an element in the left hand set as
an “edge” of the Young diagram. For a fixed i, j, such an edge exists for z = k if k > bi+1,j, bi,j+1
(see Figure 12).

(i, j, k)

bi,j,k

bi,j+1,k

bi+1,j,k

FIGURE 12. A “corner” of λ at (i, j, k) i.e. (i, j, k) ∈ λ, (i+ 1, j, k), (i, j+ 1, k) ∈ Ĩ.

By Proposition 3.3.3, |C| is equal to the left hand side of (5). So it suffices to show |C| ⩽ |S|. We
define an injective mapψ : C → S as follows: ψ(U) = (ψ1(U), ψ2(U), ψ3(U)), whereψ3(U) is least
among the vectors in Uwith

(ψ1(U) + 1,ψ2(U), ψ3(U)), (ψ1(U), ψ2(U) + 1,ψ3(U)) /∈ U
This is possible since |U| <∞ and each such bounded U ⊆ λ is adjacent to Ĩ.

Finally, we show ψ is injective. Suppose U ∈ Cα3 , U
′ ∈ Cα ′

3
with U ̸= U ′. If U ∩ U ′ = ∅, then

clearly ψ(U) ̸= ψ(U ′). If U ∩ U ′ ̸= ∅, then we must have α3 ̸= α ′
3. Without loss of generality, say

α3 < α
′
3. Then U ′ ⊂ U and ψ(U ′) + (0, 0, α3 − α

′
3) ∈ U. (See example 3.4.5.)

Hence ψ3(U) ⩽ ψ3(I ′)+α3−α ′
3 < ψ3(U

′), so ψ3(U) ̸= ψ3(U ′) as required. The result follows.

□
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Example 3.4.5. Consider I = (x3, z3, y4, x2y, xy2, x2z, y2z2). Let α1 = 3, α2 = 0. The slice at
x = 3 is given in Figure 13, with α3 = −2, α ′

3 = −1. A translation (0, 0,−1) maps the components
U ′ ⊆ (Ĩ+ α)∖ Ĩ into U ⊆ (Ĩ+ α ′)∖ Ĩ.

Ĩ

Ĩ+ α

Ĩ+ α ′
z

y

FIGURE 13. A slice at x = 3. The blue hatched area U is (a slice of) a bounded com-
ponent for (Ĩ+ α)∖ Ĩ, the red hatched area U ′ is (a slice of) a bounded component
(Ĩ+ α ′)∖ Ĩ. After translation (0, 0, α3 − α

′
3) U

′ stays in U.

So far we have only used reduction to monomial ideals, but we will now make use of the
reduction to Borel-fixed ideals (Proposition 3.1.9).

Lemma 3.4.6. [27, Lemma 3.2.]. If I is a Borel-fixed (monomial) ideal in HilbdA3 with k[z] decomposition

I =
⊕

xiyj(zb
z
i,j),

then max{bzi+1,j, b
z
i,j+1} = b

z
i,j+1.

Proof. By Proposition 3.1, I is strongly stable. So xiyj+1zb
z
i,j+1 ∈ I implies xi+1yjzb

z
i,j+1 ∈ I, and

the result follows. □

Proof of Theorem 3.0.3. This is [27, Theorem 3.6]. By Lemma 3.4.3, it suffices to show the inequality
for s = ppn and s = pnp. Consider the k[z], k[y] and k[y, z] decompositions of I

I =
⊕

xiyj(zb
z
i,j) =

⊕
xizj(yb

y
i,j) =

⊕
xiIi

Have
∑
j⩾0 b

z
i,j = dimk(k[y, z]/Ii). Applying Lemma 3.4.4 and Lemma 3.4.6, we have

dimk Tppn(I) =
∑

α1,α2⩾0
α3<0

dimk |T(I)|(α1,α2,α3) ⩽
∑

α1,α2⩾0

∑
i⩾α1
j⩾α2

(bi,j −max{bzi+1,j, b
z
i,j+1})

=
∑

α1,α2⩾0

∑
i⩾α1
j⩾α2

(bzi,j − b
z
i,j+1) =

∑
i,j⩾0

(i+ 1)(j+ 1)(bzi,j − b
z
i,j+1)

=
∑
i,j⩾0

(i+ 1)bzi,j =
∑
i⩾0

(i+ 1) dimk
k[y, z]

Ii
=

r−1∑
i=1

r−1∑
j=i

dimk
k[y, z]

Ij
.
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Claim that for d ⩽ dimk(S/m
r), for all 0 ⩽ j ⩽ r, we have

r−1∑
i=j

dimk
k[y, z]

Ii
⩽
r−1∑
i=j

dimk
k[y, z]

(y, z)r−i
,

with equality for all i only if I = mk. This is [27, Lemma 3.4]. We omit the proof, but it is an
induction argument that requires I to be strongly stable. Hence,

(6) dimk Tppn(I) ⩽
r−1∑
i=1

r−1∑
j=i

dimk
k[y, z]

(y, z)r−i
.

From discussion in Example 3.4.2, dimk Tppn(m
r) =

(
r+3
4

)
. The right hand side of (6) is then

r−1∑
i=1

r−1∑
j=i

(
r− j+ 1

2

)
=

r−1∑
i=0

(
r− i+ 2

3

)
=

(
r+ 3

4

)
,

from which we obtain the inequality for s = ppn. The inequality for s = nnp is shown similarly
by using the k[y] decomposition. The final statement is shown by noting that all the inequalities
are equalities only if I = mk (we refer the reader to the proof in [27] for details). □

Ramkumar–Sammartano conjecture that the inequalities also hold for s ∈ {npp,pnn}. Then
Conjecture A would follows from Proposition 3.3.2.

A different approach is taken by Rezaee [29], who conjectured a necessary condition for T(I) to
be maximal.

Conjecture 3.4.7. [29, Conjecture B]. Let n ⩾ 3. Suppose that I is a 0-dimensional Borel-fixed ideal in
C[x1, . . . , xn] which is given by

I = (xm1

1 , . . . , xmn
n , all mixed monomial generators),

wherem1 ⩽ m2 ⩽ . . . ⩽ mn.

Then, if
(
n+r−1
n

)
⩽ colength(I) ⩽

(
n+r
n

)
and T(I) is maximal, thenm1 = r.

Conjecture A follows from this conjecture by applying the following lemma:

Lemma 3.4.8. [29, Lemma 1.7]. Let n ⩾ 3. Suppose that I is a 0-dimensional Borel-fixed ideal in
C[x1, . . . , xn] which is given as in Conjecture 3.4.7. If colength(I) =

(
n+r−1
n

)
, then I = mr is the only

ideal of this colength for whichm1 = r.

4. PUNCTUAL HILBERT SCHEMES

We finish with a brief discussion on the punctual Hilbert scheme11, which we can study with
similar techniques.

Definition 4.0.1. The dth punctual Hilbert scheme, denoted Pd(X), parametrises length d subschemes
supported at a single point of X.

11A warning: the Hilbert scheme of points is also often referred to as the punctual Hilbert scheme in the literature.
The punctual Hilbert scheme is also referred to as the local punctual Hilbert scheme to distinguish the two.
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Alternatively, Pd(X) is the reduced fiber of the Hilbert–Chow morphism φ : Hilbd(X) → Sd(X)
over a multiplicity d cycle, and is also the Hilbert scheme of points of a local k-algebra. Many
proofs regarding the Hilbert scheme of points or their applications involve the Hilbert–Chow mor-
phism or reducing to the local case (including [4, 5, 11, 15]), which motivates the study of punctual
Hilbert scheme. Other authors have studied the punctual Hilbert scheme as an independent object
of interest [3, 36].

The tangent space to Pd(X) is comprised of those tangent vectors in T[Z]Hilb
d(X) which are in

“vertical” directions relative to φ. More precisely, we have the following general result.

Proposition 4.0.2. Suppose f : X→ Y is a map of schemes. If p ∈ Y and q is in the scheme theoretic fibre
f−1(p), then

Tqf
−1(p) ∼= Coker(df|q : f∗ΩY |q → ΩX|q)

∨.

In particular, to calculate the dimension of Tqf−1(p) it suffices to calculate the dimension of Coker(df|q).

So if we consider the map induced by the Hilbert–Chow morphism on cotangent spaces,

dφ : ΩSd(A2) → ΩHilbd(A2),

we have that dimk T[Z](Pd(X)) = dimk T[Z]Hilb
d(X) − dimk im(dφ|[Z]). In general, calculating

dimk T[Z](Pd(X)) in this way requires calculating the dimension of dimk T[Z]Hilb
d(X), which we

have seen is generally not straightforward, but in the case where X is a smooth surface, we have
dimk T[Z]Hilb

d(X) = 2d. Bejleri–Stapleton use this line of reasoning to prove the following result.

Theorem 4.0.3 (Bejleri–Stapleton [3]). If I is a monomial ideal such that [I] = V(I) is a length d sub-
scheme supported at the origin, then

dim(T[I]Pd(S)) = 2d−A,

where if λ is the corresponding Young diagram,

A = (maximum of horizontal steps in λ) + (maximum of vertical steps in λ).

Proof. Without loss of generality, we may take S = A2 = Speck[x, y]. The map dφ|[I] is induced
on cotangent spaces by φ∗. The coordinate ring of Sd(A2) is

A = ∧dk[x, y] = k[x1, . . . , xd, y1, . . . , yd]
Sd ,

which is generated by polynomials

pr,s =

n∑
i=1

xriy
s
i .

We want to calculate φ∗(pr,s).

The following is from [14, Proposition 2.2]. For any ideal I ⊆ S, we can decompose as I = ∩Ii,
where Ii relatively coprime, V(Ii) = pi = (ai, bi), and colength(Ii) = di. Note that k[x, y]/I is
a direct sum of local rings k[x, y]/Ii. View x, y as endomorphisms of C[x, y]/I via multiplication.
LetMx,My respectively be the corresponding matrices. ThenMx,My commute. In k[x, y]/Ii, we
have that (x − ai)r = 0 for some r ⩾ 1, so the eigenvalue at pi of Mx is ai (with multiplicity di).
Similarly, the eigenvalue ofMy at pi is bi. Hence,

Tr(Mr
xM

s
y) =

∑
i

dia
r
ib
s
i = pr,s(φ(I)).
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Thus φ∗(pr,s) = Tr(xrys) and the image of φ∗ is spanned by Tr(xrys) mod m2. Recall in
Proposition 3.3.5 we considered coordinates crshk around [I] ∈ Hilbd(A2). Writing xrys as a matrix
using this basis, we can compute the trace as

Tr(xrys) =
∑
h,k∈λ

cr+h,s+khk .

Recall in Section 3.3, we considered elements of m/m2 as arrows. Under this correspondence,
Tr(xrys) can be viewed as a sum of arrows with slope s/r. If s, r are both non-zero, then the arrows
are pointing south-west (has signature nn), and hence is equivalent to 0.

When s = 0, we have a sum of horizontal arrows of length r. If r > max(△h), we can move the
arrow up and left until the tail crosses the y axis, and it is equivalent to 0. For 1 ⩽ r ⩽ max(△h)
this is not possible, so these give non-zero elements. This is demonstrated in Figure 14.

FIGURE 14. Three non-zero elements ofΩHilbd(A2) represented by arrows.

Similarly, we can consider the case r = 0, and we obtain a linearly independent generating
set for im(dh|[I]) of size max(△v) +max(△h) . The result follows since Hilbd(A2) has dimension
2d. □

Example 4.0.4. Consider I = (x2, xy, y3) ∈ P4 and α = (−1, 0). The Young diagram and its
translate is given in Figure 15.

FIGURE 15. The young diagram λ is outlined in black and (Ĩ + α)∖ Ĩ is shaded in
red for I = (x2, xy, y3) and α = (−1, 0).

The two top arrows are equivalent. The arrows correspond to the following morphisms (see
Remark 3.3.4):
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ϕ1 : I→ S/I ϕ2 : I→ S/I

xy2 7→ y2, x2 7→ x

xy 7→ y

All other monomials are sent to 0. By the proof of Theorem 4.0.3, d(φ∗(p1,0)) corresponds to
ϕ1 + ϕ2. In light of Section 1.3, this corresponds to the deformation

Iϵ = (x2 + ϵx, xy+ 2ϵy, y3),

and for all 0 ̸= ϵ ∈ k, V(Iϵ) is supported at two points: the origin and (−ϵ, 0). We are “splitting”
the fat point into two points. Hence this tangent vector is in the cokernel of dφ and not contained
in the tangent space of P4.

Corollary 4.0.5. For any [I] ∈ Pd, we have that dim T[I]Pd ⩽ 2d − 2, and equality occurs at a monomial
ideal I if and only if I = mr where m = (x, y). i.e. mr gives the maximally singular points of Pd.

Proof. Also see [3, Corollary 11]. The Borel action on Hilbd(A2) fixes Pd and since Pd is proper, I ∈
Pd implies Gin(I) ∈ Pd. So again the maximum dimension tangent space is given at a monomial
ideal. Then by Theorem 4.0.3, have

dim T[I]Pd ⩽ 2d− 2,

with equality when (maximum of horizontal steps in λ) = (maximum of vertical steps in λ) = 1
This happens precisely when λ is a staircase, so I = mr.

□

Remark 4.0.6. Bejleri–Stapleton show that for k = C, if dim T[I]Pd = 2d − 2 for any ideal I, then
I = mr. For this, a more general form of Theorem 4.0.3 is required.

Consider the vector bundle E → Hilbd(A2) whose fiber at [X] ∈ Pn is H0(A2, TA2 |X). This is a
2-dimensional vector space. There is a natural injective morphism of sheaves [3]

αd : E→ THilbd(A2).

For a monomial ideal I, we have

rank(αd|[I]) = (maximum of horizontal steps in λ) + (maximum of vertical steps in λ).

This can be proven with similar techniques, showing that derivations act on the Young diagrams
by shifting down or right. Details can be found in [3, Section II]. Thus the content of Theorem 4.0.3
is that corank(dh|I) = corank(αd|[I]). Bejleri–Stapleton also prove that for any ideal I,

dim(T[I]Pd) = corank(dφ|[I]) ⩾ corank(αd|[I]).

The key idea is that there is a holomorphic symplectic form ω ∈ H0(Hilbd(A2),∧2ΩHilbd(A2)),
giving an isomorphismω : THilbd(A2)

∼= ΩHilbd(A2). Bejleri–Stapleton show that dφ factors through
α ◦ω. 1-parameter degenerations (see Remark 3.1.6) can then used to modify the argument in the
proof of Corollary 4.0.5 to give the result.
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[13] L. GÖTTSCHE, Hilbert schemes of points on surfaces, Proceedings of the ICM, Beijing, 2 (2002), pp. 483–494. 3
[14] M. HAIMAN, t, q-Catalan numbers and the Hilbert scheme, Discrete Math., 193 (1998), pp. 201–224. 25, 32
[15] M. HAIMAN, Hilbert Schemes, Polygraphs and the MacDonald Positivity Conjecture, J. Am. Math. Soc., 14 (2001),

pp. 941–1006. 3, 32
[16] J. HARRIS AND I. MORRISON, Moduli of Curves, vol. 187 of Graduate Texts in Mathematics, Springer-Verlag, New

York, 1998. 4, 6, 7, 9, 12
[17] R. HARTSHORNE, Connectedness of the Hilbert scheme, Publ. Math. IHÉS, 29 (1966), pp. 7–48. 2, 10
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