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Algebraic varieties are the solution sets of a collection of polynomials1. There are two views to take
here. On one hand, varieties are spaces, with properties that can be studied with the tools of topology
and geometry. On the other hand, polynomials form a ring, and we can use the tools of algebra to study
them. Algebraic geometry links the technology developed across many fields, in order to study varieties
(which form a large class of interesting spaces), and to generate new results in areas such as algebra
and number theory. For instance, the connection between elliptic curves (a well-studied example of an
algebraic curve) and modular forms was used by Andrew Wiles in his proof of Fermat’s Last Theorem.
Arithmetic geometry, the study of number theory through algebro-geometric methods, remains hot topic.

Of a different flavour is enumerative geometry, which is about counting geometric objects. We have
seen shadows of this during the PROMYS programme - we know that a polynomial f over a field has
at most deg(f) solutions. In fact, over the complex numbers2, f has exactly deg(f) roots, counted with
the appropriate multiplicity. A Pokemon evolution of this result is Bezout’s theorem, which states that
two plane curves of degree d, e respectively meet at de points, counted with the appropriate multiplicity
(see Remark 2.3). More generally, intersection theory formalises the idea of “counting intersections” to
a diverse range of situations. Another count we are particular interested in is the number of algebraic
curves through a fixed number of points, which is of great interest in string theory. This turns out to be
quite hard, so many invariants have been concocted which are easier to compute and give the desired
count in good situations.

However, the study of varieties is quite hard. A further simplification is obtained via tropicalisation,
which is a method of associating a combinatorial object to an algebraic variety. The idea is that com-
binatorics is easier to do than algebraic geometry, and that we can transfer these results to algebraic
geometry. This has made great advances in recent years, in simplifying known results [Mik05, NS06],
and proving new ones [JR21,Cha21]. In this talk, I will give a brief introduction to algebraic curves and
tropical methods.

We will be working over C unless otherwise specified.

1 Solution sets of polynomials and projective space

A multi-variate polynomial is an element of C[x1, . . . , xn]. For instance, we have x2 + y2 − 1, xyz + x3 ∈
C[x, y, z]. The solution set or vanishing set of a multivariate polynomial f ∈ C[x1, . . . , xn] is given by

V(f) = {(x1, . . . , xn) ∈ Cn|f(x1, . . . , xn) = 0}.

If we have more polynomials, say f1, . . . , fn, V(f1, . . . , fn) consist of the points which are simultaneous
solutions to fi(p) = 0. An affine variety is the vanishing set of a set of polynomials3.

Over R, we can draw some pictures.

Note that these are not representative pictures of these vanishing sets over C. In particular, these
vanishing sets will have complex dimension one, so real dimension two, and are some kind of surface.

1Classically. We will have no discussion of schemes here.
2Or any algebraically closed field.
3Without loss of generality, we can set the set to be finite.
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Over C, these surfaces are not compact. Here, X is compact if every cover of X by open sets has a
finite subcover. We will not go into details about what this means, but for orientation, in Rn or Cn, a
subset is compact if it is i) bounded; and ii) every Cauchy sequence (roughly, a sequence of points where
the points get closer and closer together) has a limit.

Example 1.1. We have some examples of compact and non-compact sets.

Compact Not Compact
Closed ball Open ball

A finite set of points in R N points at 1/2n on a real line
Torus Rn

Solution sets to polynomials over C are almost never compact. This is very sad, for many reasons. For
instance, the reason that the statement “two distinct lines meet at a point” isn’t true. The counterexample
is two distinct parallel lines, which morally meet “at a point at infinity”. This point is in some sense
“missing”, and we want a way of filling it back it.

In general compactification refers to a way of taking a space and making it compact. There are many
ways to do this, and different methods are good for different reasons. One example is the one point
compactification, where we add in a “point at infinity”. However, for n > 1, this compactification of Cn

will be insufficient for our purposes. Intuitively, we do not want skew lines to intersect, but a one point
compactification will force them to meet. We will present the construction of projective space, which
gives a different compactification of Cn with many useful properties.

Definition 1.2. Complex projective space is (as a set),

CPn = {Lines in Cn+1 passing through the origin}.

Remark 1.3. To get an intuition for this, lets switch back to R for a moment. We can, analogously,
construct RPn. A picture of RP1 is given below. All but one point on RP1 can be represented by a point
on the line y = −1. The last point is “at infinity”.
Remark 1.4. Projective space has more structure than just a set. In particular, there is a notion of lines
being “close together”, and we (with some experience) have an intuitive sense that the space of lines
should be one dimensional - there is one dimension worth of ways to deform lines through the origin.
This is reflected in projective space being some kind of one dimensional space. Projective space is a
first instance of a moduli space, which parametrises objects of interest and encodes suitable notions of
“closeness”.

Every such line is determined by a non-zero point in Cn+1, but there are many points on the same
line. So complex projective space can also be described as

CPn = {(x0 : . . . : xn) ∈ Cn|xi not all zero}/ ∼ .

modulo an equivalence relation, where (x0 : . . . : xn) ∼ (λx0 : . . . : λxn) for λ ∈ C non-zero. We denote
an equivalence class of this relation as [x0 : . . . : xn]. These are called homogeneous coordinates.
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There is a copy of Cn contained in CPn as follows. Consider U0, which consists of those elements
[x0 : . . . : xn] with x0 6= 0. We can scale the coordinates so that without loss of generality, x0 = 1. Then

U0 = {[1 : x1 : . . . : xn] ∈ CPn} = Cn.

This is the sense in which CPn is a compactification of Cn. Note that for n > 1 there is more than
one point “at infinity”. We leave it as an exercise to prove that there is a copy of CPn−1 at infinity, i.e.
CPn \ Cn ∼= CPn−1.

2 Algebraic curves

We return to vanishing sets of polynomials. We want to consider an analogous construction to algebraic
varieties in projective space, but we have a problem - the value of a polynomial does not make sense! For
instance, if we have the polynomials x2 − y − 3 ∈ C[x, y], and we try to substitute in [2 : 1], we obtain a
value of 0. But [2 : 1] is equivalent to [4 : 2], and substituting this in, we obtain 11 6= 0.

To fix this, we consider homogeneous polynomials, where the degree of each term is the same. The
value at a point of such a polynomial is still undefined, but the vanishing set is. For instance, if we
consider the homogeneous polynomial F (x, y, z) = x2 + y2 − z2 ∈ C[x, y, z], we have

(λx)2 + (λy)2 − (λz)2 = λ2(x2 + y2 − z2).

So (x0, y0, z0) is a solution to F (x, y, z) = 0 if and only if (λx0, λy0, λz0) is a solution for all λ 6= 0. Hence
the vanishing set

V(F ) = {[x0 : . . . : xn] ∈ CPn|F (x0, . . . , xn) = 0}

is well-defined. More generally, we obtain V(F1, . . . , Fn), and such spaces are called projective varieties.

We have a simple way of turning a homogeneous polynomial in F ∈ C[x0, . . . , xn] into a polynomial
in f ∈ C[x1, . . . , xn], namely setting x0 = 1. In general, we can chose to set any xi = 1. For example,
if we set z = 1 for the the polynomial F (x, y, z) above, it becomes x2 + y2 − 1. We call this process
dehomogenisation. There is a reverse process of homogenisation, which we leave to the reader to think
about.

Suppose we have a polynomial f ∈ C[x1, . . . , xn] and corresponding homogeneous polynomial F ∈
C[x0, . . . , xn]. Then a compactification of X = V(f) is given by X̄ = V(F ). This is called the projective
closure of X.
Remark 2.1. In general, the projective closure of an affine variety V(f1, . . . , fn) is given by some projective
variety, but it is not true that the projective closure is V(F1, . . . , Fn), where Fi is the homogenisation of
fi. This is clunky for good reason - the correct way to think about this is with ideals, but let’s not go
there now.
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Consider a projective variety X. If it is smooth (a term we will not define, but heuristically it has no
“bad points” such as cusps or nodes), and has (complex) dimension 1, then X is a algebraic curve or
Riemann surface. Algebraic curves are amazingly rich to study. Firstly, we may ask the following:

Question 2.2. Can we classify algebraic curves?

Firstly, algebraic curves are compact orientable surfaces (real dimension two) without boundary, which
is classified by the genus, roughly the number of “holes”.

We have the following facts:

1. An algebraic curve with genus 0 is isomorphic4 to CP1.

2. There are infinitely many algebraic curves which have genus 1 that are pairwise non-isomorphic.
An elliptic curve is a genus 1 algebraic curve along with a chosen point.

Another basic invariant of an algebraic curve is its degree, which is the generic number of intersections
with a hyperplane.
Remark 2.3. Bézout’s theorem states that a degree d plane curve and a degree e plane curve meets at
de points, counted with the appropriate multiplicity.

3 A view towards tropical geometry

Algebraic curves are hard to study. The idea of tropical geometry is to reduce algebraic curves to a
combinatorial object, so that they are easier to study. To demonstrate some ideas, consider an algebraic
curve X ⊆ CP2 and intersect it with (C∗)2 ⊆ CP2 to obtain X ′. We can apply the map X ′ → R2, given
by (z1, z2) 7→ (− log |z1|, − log |z2|). This produces a subset of the real plane called an amoeba. A picture
is given in

An amoeba has some graph-like structure concentrated near the origin, and some “tendrils” going off
to infinity in particular directions. By some suitable limiting process, we can extract a union of intervals

4Note that we have not defined what an isomorphism is. This is a sketchy talk for a reason. For details, the writer
recommends Vakil or Hartshorne, with particular fondness for Vakil, but suggests taking some courses in algebra and
geometry first.
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in the plane, which is called an tropical curve. A tropical curve has the structure of a graph, with the
added information of edge lengths, and some number of infinite legs. The process of producing a tropical
curve from an algebraic one is called tropicalisation.

Tropicalisation is a dramatic operation that kills a lot of information about the algebraic curve. How-
ever, it turns out that we retain enough information for this to be useful. For instance, the genus of the
algebraic curve is the genus of the tropical curve5. The degree of the curve is given by the number of
legs going off in the directions (−1, 0), (0, −1), or (1, 1), which is called the degree of the tropical curve.

Starting with some question about algebraic curves, tropical methods typical involve the following:

1. Solve an analogous question with tropical curves.

2. Prove a “lifting theorem” which relates the tropical answer to the algebraic answer.

There are many cases where finding and solving the analogous tropical question is much easier, and
this method has allowed advances on important questions involving algebraic curves. However, there are
two difficulties. Firstly, it is not always clear what the right tropical construction is, and the analogous
tropical question can be surprising. For instance, divisor theory on algebraic curves has an analogy with
chip firing configurations [CDPR12], while it is not clear at all what the right analogy for a line bundle
should be on a tropical curve. Secondly, lifting theorems are sometimes highly non-trivial, and while
much progress has been made in a number of contexts [CFPU15, Spe14, Ran17], the general picture is
still very much obscure.

There is much to talk about here, and this talk is finite, so we will finish by indicating the ideas of one
example.

Question 3.1. Given n fixed points in P2, how many degree d, genus g curves pass through them?

We should immediately ask, does this question make sense? In particular, is the number finite? Does
it matter what points we choose? These are all important, but we will not discuss them.

Example 3.2. A degree 1 curve is a line. There is 1 line passing through two points, infinitely many
lines through one point, and no lines through three general points.

The moral is that we should choose n, d, g wisely. We take n = 3d + g − 1. We define Nd,g to be
the number of degree d, genus g through n generically chosen points in P2. It turns out that this is
well-defined6. We write Nd = Nd,0. We have the following result.

Theorem 3.3 (Kontsevich). The numbers Nd satisfies the following recursion relation. N1 = 1 and

Nd =
∑

d1+d2=0
d1,d2>0

(
d2

1d2
2

(
3d − 4
3d1 − 2

)
− d4

1d2

(
3d − 4
3d1 − 1

))
Nd1Nd2 .

The standard proof requires some amount of technology.

Gathmann-Markwig [GM08] give an alternative proof of this result using tropical curves. For plane
tropical curves, the lifting was proven by Mikhalkin7 [Mik05]. For the analogous tropical question, the
rough idea is that a tropical curve of degree d with contracted edges can be “split” into two tropical
curves of degree d1, d2, with d1 + d2 = d.

5For an appropriate definition of genus.
6We may ask this question for a general variety X, instead of just CP2. It turns out that these questions become

significantly harder. A substitute invariant is the Gromov-Witten invariant, which can often actually be computed, and is
equal to the count we want in good cases. However, the GW invariant is longer enumerative - it can be a fraction, or even
negative, so is clearly no longer counting geometric objects.

7This paper was the first use of tropical geometry for algebraic curves, and fundamental to the field. It is surprisingly
readable and good for intuition, although the amoeba construction has since succeeded by more readily generalisable
constructions.
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The proof concludes by a counting argument. As a warning, we are throwing some stuff under the rug
and being very vague. For the very enthusiastic, the author recommends Gathmann–Markwig’s original
paper.

Consider the moduli space (see Remark 1.4) Md,n of n-marked, degree d tropical curves, and let
Md = Md,0. We have some natural maps

1. The forgetful map ft : Md,n → Md,m where C ∈ Md,n is mapped to ft(C) ∈ Md,m, where we
“forget” that the points xn+1, . . . , xm on C exists.

2. The evaluation maps evi: Md,n → R2, where for each tropical curve C ∈ Md,n, we record where xi

is.

Definition 3.4. For d ≥ 2 and n = 3d, define

π : ev1
1 × ev2

2 × ev3 × . . . × evn × ft4 : Md,n → R2n−2 × M4.

Here evj
i is the jth coordiante of evi. We calculate the degree of π at two different points, P and P ′

on M4 (roughly, how many preimages each points have, with multiplicity), and they should be the same.
The contributions are as follows:

(P) We have (i) The curve is irreducible, or (ii) the curve reduces into two components C1, C2, with
x1, x2 on C1, and x3, x4 are on C2.

(P’) x1, x3 are on one component, x2, x4 are on the other.

For (P), the irreducible contribution gives Nd. For the reducible contributions, we require 3d1 − 1 of
the other points x5, . . . , xn to be on C1 and the other points are on C2. This is a dimension condition -
note we want a finite count! There are

( 3d−4
3d1−1

)
ways of choosing which points go on which component.

There are Nd1 choices for C1, Nd2 choices for C2. For the choice of x1 and x2, by the definition of π they
must be on fixed lines. By a tropical version of Bézout’s theorem (see Remark 2.3), there are d1 choices
for each. Also by Bézout’s theorem (see Remark 2.3), C1 and C2 intersect at d1d2 points. Hence there
are d1d2 choices for the gluing of C1 and C2.

A similar calculation gives the other part of the sum, and equating the two gives the result.
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